# Département des Pyrénées Orientales



# Communauté de communes Sud Roussillon

# Schéma Directeur d'Alimentation en Eau Potable



# Rapport d'étude

| Numéro<br>d'affaire | Date         | Version | Auteurs                          | Collaboration VISA   |                      | Diffusion |
|---------------------|--------------|---------|----------------------------------|----------------------|----------------------|-----------|
| 20.014              | Janvier 2022 | Α       | Elodie PIOCH<br>Emeline RIGHETTI | Bastien<br>VIGOUROUX | Yannick<br>PIAUGEARD | МО        |
| 20.014              | Janvier 2022 | В       | Elodie PIOCH<br>Emeline RIGHETTI | Bastien<br>VIGOUROUX | Yannick<br>PIAUGEARD | МО        |
| 20.014              | Mai 2022     | С       | Elodie PIOCH<br>Emeline RIGHETTI | Bastien<br>VIGOUROUX | Yannick<br>PIAUGEARD | МО        |



# **Sommaire**

| 1 Introduction |     |                                                                    |    |  |  |
|----------------|-----|--------------------------------------------------------------------|----|--|--|
| 2              | Pr  | ésentation générale du territoire desservi                         | 5  |  |  |
|                | 2.1 | Contexte administratif                                             | 5  |  |  |
|                | 2.2 | Contexte topographique                                             | 5  |  |  |
|                | 2.3 | Contexte climatique                                                | 7  |  |  |
|                | 2.4 | Contexte hydrographique                                            | g  |  |  |
|                | 2.5 | Contexte géologique et hydrogéologique                             | 11 |  |  |
|                | 2.6 | Patrimoine environnemental                                         | 15 |  |  |
|                | 2.7 | Patrimoine culturel                                                | 19 |  |  |
|                | 2.8 | Contexte réglementaire                                             | 19 |  |  |
| 3              | Po  | pulation et dispositions liées à l'urbanisme                       | 26 |  |  |
|                | 3.1 | Occupation des sols – Urbanisation                                 | 26 |  |  |
|                | 3.2 | Données démographiques actuelles                                   | 27 |  |  |
|                | 3.3 | Données démographiques futures                                     | 31 |  |  |
|                | 3.4 | Activités économiques                                              | 32 |  |  |
|                | 3.5 | Structures d'accueil                                               | 33 |  |  |
| 4              | Pr  | esentation générale de l'alimentation en eau potable du territoire | 34 |  |  |
| 5              | Eta | at des équipements AEP                                             | 36 |  |  |
|                | 5.1 | Mode de gestion                                                    | 36 |  |  |
|                | 5.2 | Ressource et équipements de prélèvements - Production              | 36 |  |  |
|                | 5.3 | Ouvrages de stockage                                               | 38 |  |  |
|                | 5.4 | Ouvrages de surpressions                                           | 39 |  |  |
|                | 5.5 | Ouvrages de traitement                                             | 40 |  |  |
|                | 5.6 | Réseaux                                                            | 40 |  |  |
|                | 5.7 | Défense incendie                                                   | 45 |  |  |
| 6              | An  | nalyse de la qualité de l'eau                                      | 48 |  |  |
|                | 6.1 | Qualité de l'eau brute                                             | 48 |  |  |
|                | 6.2 | Alénya – F2 Cami dels Ossous                                       | 48 |  |  |
|                | 6.3 | Théza – forage village                                             | 49 |  |  |
|                | 6.4 | Latour Bas Elne – Serralongue ouest                                | 50 |  |  |
|                | 6.5 | Saint Cyprien – Champ captant Camp horts                           | 51 |  |  |
|                | 6.6 | Qualité de l'eau traitée                                           | 52 |  |  |
|                | 6.7 | Synthèse                                                           | 66 |  |  |
| 7              | An  | nalyse du fonctionnement de service                                | 67 |  |  |
|                | 7.1 | Analyse de la production                                           | 67 |  |  |
|                | 7.2 | Volumes mis en distribution                                        | 71 |  |  |
|                | 7.3 | Analyse de la consommation                                         | 72 |  |  |
|                | 7.4 | Indices de performances                                            |    |  |  |
| 8              | Dia | agnostic du réseau AEP                                             | 85 |  |  |
|                |     |                                                                    |    |  |  |

| 8.1    | Analyse des débits résiduels nocturnes sur chaque secteur                   | 85  |
|--------|-----------------------------------------------------------------------------|-----|
| 8.2    | Recherche de fuites                                                         | 86  |
| 8.3    | Modélisation du réseau AEP                                                  | 86  |
| 9 Be   | soins futurs et adéquation des infrastructures actuelles                    | 87  |
| 9.1    | Détermination des besoins futurs                                            | 87  |
| 9.2    | Adéquation des infrastructures actuelles avec les besoins actuels et futurs | 94  |
| 10 Etc | ude des ressources en eau potentielles                                      | 101 |
| 10.1   | Réflexion sur les économies d'eau potable                                   | 101 |
| 10.2   | Augmentation du prélèvement existant                                        | 104 |
| 10.3   | Nouvelles ressources                                                        | 104 |
| 10.4   | Interconnexions potentielles                                                | 105 |
| 11 Pr  | oposition de scénarios                                                      | 107 |
| 11.1   | Aspect ressource                                                            | 107 |
| 11.2   | Aspect traitement                                                           | 107 |
| 11.3   | Aspect stockage                                                             | 109 |
| 11.4   | Aspect reprises / surpressions                                              | 111 |
| 11.5   | Modification, renforcement, et extension des réseaux                        | 112 |
| 11.6   | Sécurisation - diversification                                              | 114 |
| 11.7   | Synthèse des scénarios proposés                                             | 114 |
| 12 Etc | ude précise du scénario retenu et conclusions                               | 116 |
| 12.1   | Estimation des coûts d'investissement et incidences sur le prix de l'eau    | 117 |

#### 1 INTRODUCTION

Le présent Schéma Directeur d'Alimentation en Eau Potable concerne la Communauté de communes Sud Roussillon dans les Pyrénées Orientales incluant les communes d'Alénya, Corneilla-del-Vercol, Latour-Bas-Elne, Montescot, Saint-Cyprien et Théza

L'un des principaux objectifs de cette étude est d'actualiser le SDAEP réalisé en 2014 en intégrant l'ensemble du territoire de la communauté de communes et de permettre ainsi à la collectivité de disposer d'une planification des travaux à réaliser sur les prochaines années.

Le schéma directeur d'alimentation en eau potable sera organisé en quatre phases :

- Phase 1 : État des lieux
- Phase 2 : Besoins futurs et adéquation des infrastructures actuelles
- Phase 3 : Etude des ressources en eau potentielles
- Phase 4 : Schéma directeur d'alimentation en eau potable

Le présent document constitue le Schéma Directeur d'Alimentation en Eau Potable. Il va successivement aborder les points suivants :

- Présentation générale de la collectivité,
- Présentation générale de l'alimentation en eau potable,
- État des équipements AEP,
- Analyse du fonctionnement de service,
- Diagnostic du réseau d'alimentation en eau potable (campagnes de mesures, sectorisation, modélisation...),
- Calcul des besoins futurs et adéquation des infrastructures actuelles
- Etude des ressources en eau potentielles
- Proposition de scénarios et programme de travaux

#### 2 PRESENTATION GENERALE DU TERRITOIRE DESSERVI

# 2.1 CONTEXTE ADMINISTRATIF

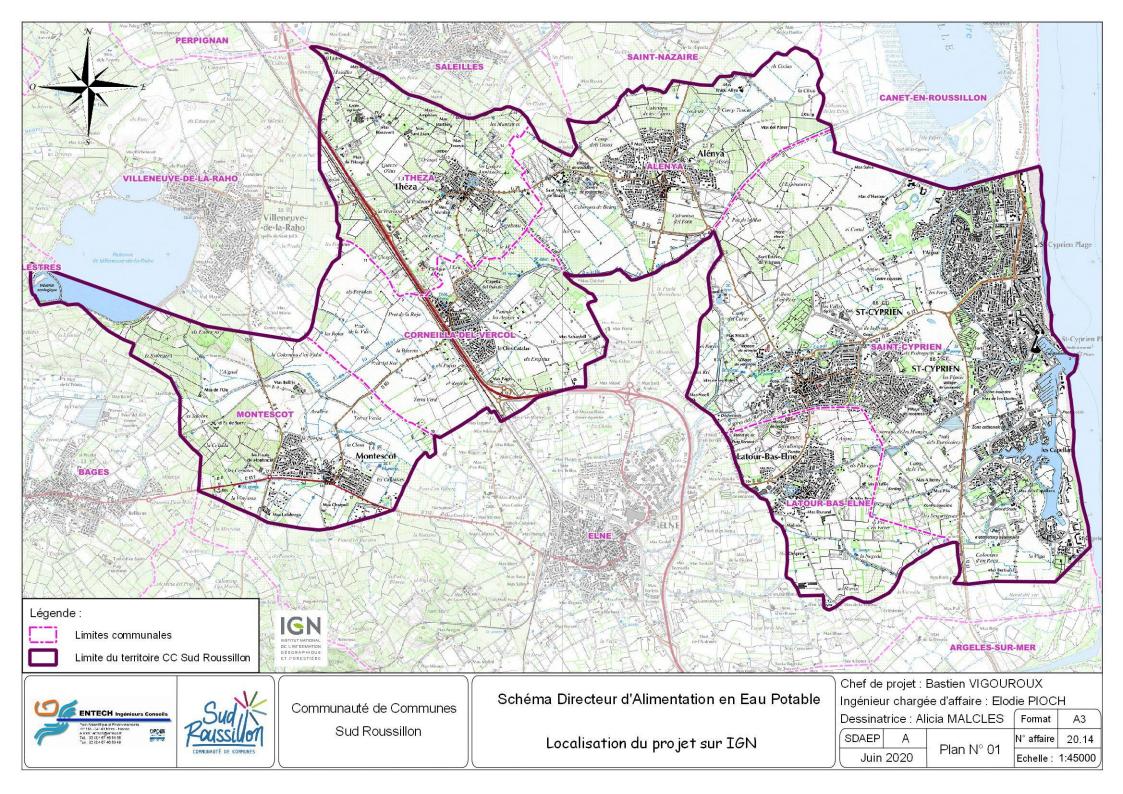
Le territoire d'étude concerne l'ensemble de la Communauté de communes Sud Roussillon composée des communes d'Alénya, Corneilla-del-Vercol, Latour-Bas-Elne, Montescot, Saint-Cyprien et Théza.

La Communauté de communes Sud Roussillon a été créée en 1992. Ses principales compétences sont :

- Gestion du service collecte et traitement des déchets
- · Gestion de l'eau et de l'assainissement
- Gestion de l'éclairage public
- Aménagement du territoire, aménagement et entretien des voiries intercommunales et espaces verts
- Développement économique et création de structures adaptées (pépinières d'entreprises Sud Roussillon, zones d'activités...)
- Protection et mise en valeur de l'environnement (gestion de la problématique hydraulique et inondation avec la Gemapi, création de sentiers multiusages...)
- Aménagement et gestion d'équipements sportifs d'intérêt communautaire
- Gestion des services de fourrière animale et automobile

# La Communauté de Communes Sud Roussillon gère en régie directe l'eau et l'assainissement sur l'ensemble de son territoire.

Elle est maître d'ouvrage des réseaux d'adduction et de distribution, et des ouvrages destinés à la production et l'alimentation en eau potable sur l'ensemble des six communes mis à part pour la commune de Montescot pour laquelle elle effectue un achat d'eau à la Communauté de Communes Albères Côte Vermeille Illiberis.


# 2.2 CONTEXTE TOPOGRAPHIQUE

D'un point de vue topographique, le territoire de la communauté de communes Sud-Roussillon (CCSR) a un relief relativement peu marqué (de 0 à 40 m NGF).

Les altitudes caractéristiques des communes du territoire sont répertoriées dans le tableau suivant :

| Commune                        | Altitude minimale | Altitude maximale | Centre-bourg |
|--------------------------------|-------------------|-------------------|--------------|
| Alénya 1.8 m NGF               |                   | 12,8 m NGF        | 7,5 m NGF    |
| Corneilla-del-Vercol 7.3 m NGF |                   | 21,5 m NGF        | 12 m NGF     |
| Latour-Bas-Elne                | 4 m NGF           | 26,5 m NGF        | 10 m NGF     |
| Montescot                      | 9 m NGF           | 37 m NGF          | 15 m NGF     |
| Saint-Cyprien                  | 0 m NGF           | 26 m NGF          | 3 m NGF      |
| Théza                          | 12 m NGF          | 21,67 m NGF       | 14 m NGF     |

La carte suivante présente le territoire de l'ensemble de la communauté de communes.

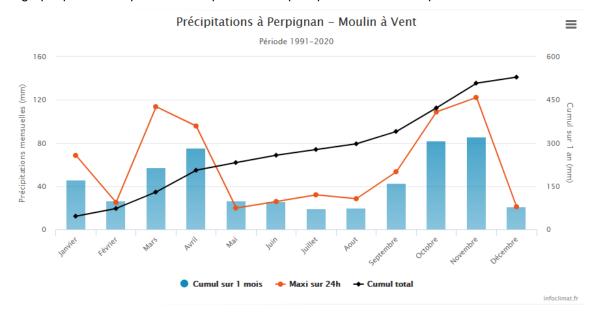


#### 2.3 CONTEXTE CLIMATIQUE

Sur le territoire le **climat est de type méditerranéen**, se caractérisant par une température douce, une pluviométrie faible et irrégulière, une durée d'ensoleillement importante et des vents fréquents.

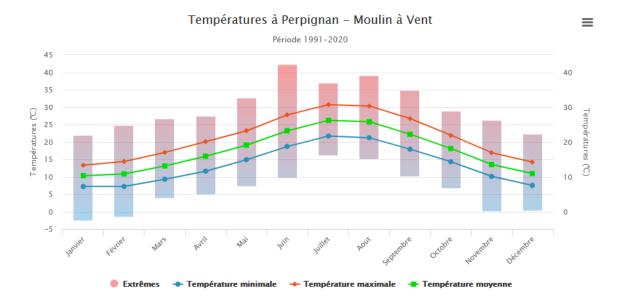
Plusieurs stations météo sont présentes : Saint-Cyprien Plage, Alenya – Mas Blanc et Lycée Agricole de Théza – Théza mais les chroniques de données disponibles sur ces stations sont trop restreintes (quelques années seulement) pour permettre de caractériser le contexte climatique de la zone.

La station météorologique de référence utilisée est donc celle de **Perpignan-Moulin à vent** située à une quinzaine de kilomètres au Nord-Ouest.


#### 2.3.1 PLUVIOMETRIE

Annuellement, il tombe environ 530 mm d'eau par an. La répartition des pluies est très inégale au cours de l'année. Les précipitations sont faibles en été et plus importantes en automne. Les averses sont plutôt rares mais fortes.

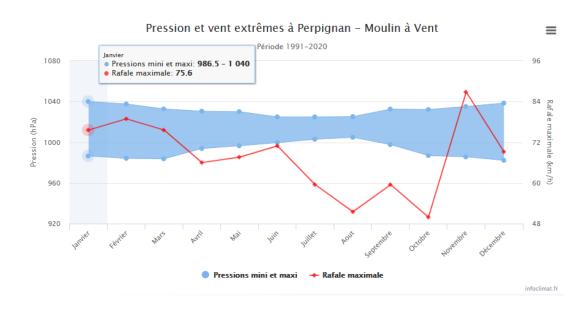
Le cumul des précipitations mensuelles (exprimées en millimètres) est caractérisé par :


- Les plus fortes valeurs en automne et hiver (avec une hauteur de précipitation moyenne maximale en novembre avec 122 mm),
- Les plus faibles valeurs en été (avec une hauteur minimale moyenne de précipitation de 20 mm au mois de juillet).

Le graphique suivant présente la répartition des précipitations lors de la période 1991-2020 :



#### 2.3.2 TEMPERATURE


La température moyenne annuelle est de 17°C, avec en hiver une température moyenne se situant aux alentours des 10°C et en été aux environs de 26°C. Les mois les plus chaud (hors canicule exceptionnelle de juin 2019) sont juillet et août, le plus froid est celui de janvier.



### 2.3.3 Rose des vents

Le régime éolien dans la plaine du Roussillon est très développé. Les fortes rafales ont en majorité lieu sur une période allant de novembre à mars. Les principaux vents observés sur le territoire sont :

- La **Tramontane** qui est le vent dominant sur le secteur. Il souffle en venant du Nord-Ouest et peut atteindre des vitesses très importantes (jusqu'à 180 km/h). C'est un vent asséchant car il chasse les formations nuageuses, laisse place au soleil et accentue le phénomène d'évapotranspiration.
- La **Marinada** et le **Llevant**, vents d'Est et du Sud Est qui sont également ressentis et amènent les précipitations venant de la Méditerranée.
- Le **Vent d'Espagne**, vent de secteur Sud à Sud-Ouest, qui est un vent chaud et humide souvent vecteur de précipitations.
- Le Canigoulenc, vent de secteur Ouest, porteur de pluies fortes et d'humidité.



# 2.4 CONTEXTE HYDROGRAPHIQUE

#### 2.4.1 RESEAU HYDROGRAPHIQUE

Le territoire de la communauté de communes Sud Roussillon (CCSR) est parcouru par plusieurs canaux dont notamment le canal d'Elne et le canal d'Aygual qui traverse la commune de Saint-Cyprien.

Quelques cours d'eau sont également présents :

- Le ruisseau « Rec de la Torre » qui longe le sud de la commune de Latour-Bas-Elne, et traverse la commune de Saint-Cyprien au sud
- Le cours d'eau Agouille de la Mar (FRDR233) qui longe l'extrémité sud de la commune d'Alenya et traverse les communes de Corneilla-del-Vercol et Montescot
- Le cours d'eau El Réart, à l'aval de la confluence avec la Canterrane (FRDR232b) qui longe l'extrémité nord de la commune de Théza

#### 2.4.2 ZONES INONDABLES

#### Le territoire de la communauté de communes est fortement impacté par le risque inondation.

Les communes d'Alénya, Latour-Bas-Elne, Saint Cyprien et Théza sont concernées par un Plan de Prévention des Risques Inondation (PPRI) :

- Le PPRI de la commune d'Alenya a été approuvé le 19 avril 2000. La carte de zonage de l'aléa inondation indique un risque d'aléa faible sur la majorité de la partie urbanisée de la commune et un risque faible sur le reste du territoire communal.
- Le PPRI de la commune de Latour-Bas-Elne a été approuvé le 15 novembre 2012. La carte de zonage de l'aléa inondation indique des côtes de références pouvant aller jusqu'à +2.2m par rapport au terrain naturel sur la partie sud du bourg
- La commune de Saint Cyprien dispose d'un Plan des surfaces submersibles (PSS) valant plan de prévention du risque (PPR) inondation datant de 1964 et d'un PPRI prescrit en 2006. Un projet de PPRI est en cours de réalisation (phase de consultation). Une partie du territoire communal est classé en zone rouge.
- Le PPRI de la commune de Théza a été approuvé le 17 avril 2000 et modifié le 3 juillet 2014. D'après le zonage de l'aléa inondation, quelques zones peuvent être inondées à plus de 1m, cependant, le territoire est essentiellement constitué de zone pouvant être submergé entre 50cm et 1m. Le risque d'inondation vient essentiellement du cours d'eau du Réart.

Les communes de Corneilla-Del-Vercol et Montescot, disposent uniquement d'un porter à connaissance du risque d'inondation réalisé par la DDTM en mars 2019 qui identifie également une partie des territoires communaux en zone d'aléa vis-à-vis du risque inondation.



Figure 1 - Extrait cartographie PPRI Alénya

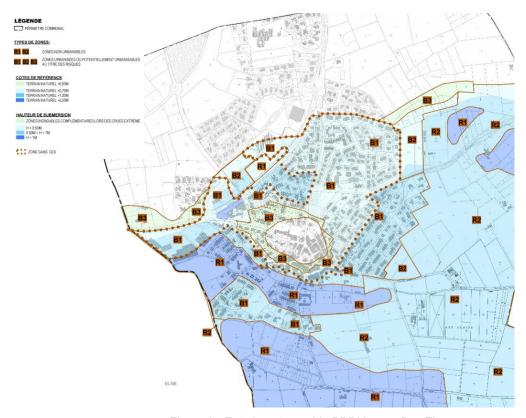
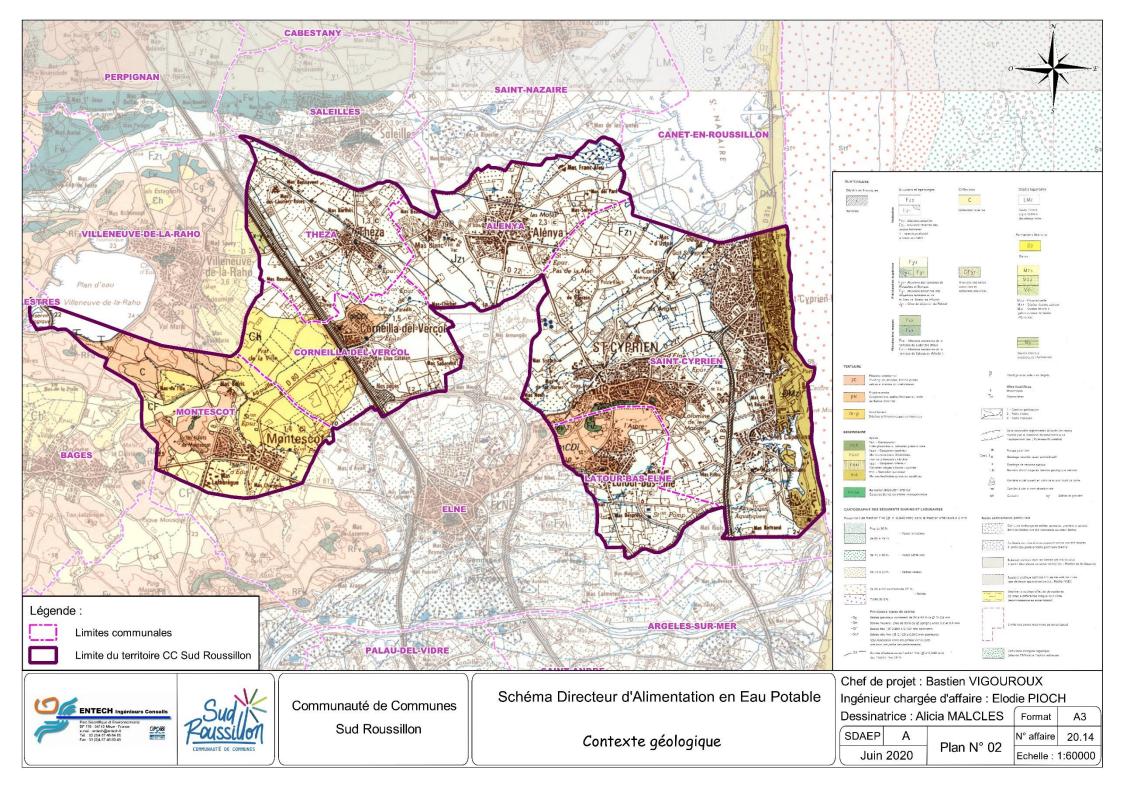


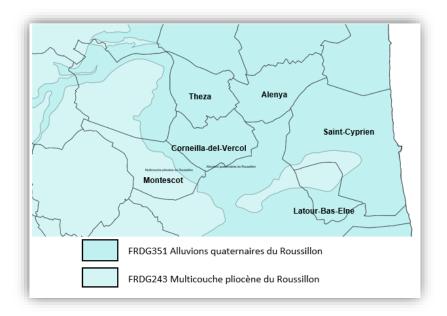

Figure 2 - Extrait cartographie PPRI Latour Bas Elne

# 2.5 CONTEXTE GEOLOGIQUE ET HYDROGEOLOGIQUE


#### 2.5.1 CONTEXTE GEOLOGIQUE

Le contexte géologique du territoire est principalement constitué d'alluvions quaternaires récentes.

D'autres formations géologiques sont également présentes :


- La partie nord de la commune de Latour-Bas-Elne et une partie de la commune de Saint-Cyprien sont situées sur une entité datant du Pliocène composé de poudingue, arkoses, limons jaunes, sables et marnes concrétionnées, tout comme une partie de la commune de Montescot.
- La commune de Saint-Cyprien est bordée sur sa partie Est par des cordons littoraux, des dunes et des dépôts lagunaires, vases et limons argilo-sableux des étangs salés.
- La commune de Montescot est située principalement sur des colluvions, alluvions et formations glaciaires étroitement associées. La commune de Corneilla-del-Vercol est également située sur cette entité mais uniquement sur sa partie Ouest.

La carte suivante présente le contexte géologique pour l'ensemble de la communauté de communes.

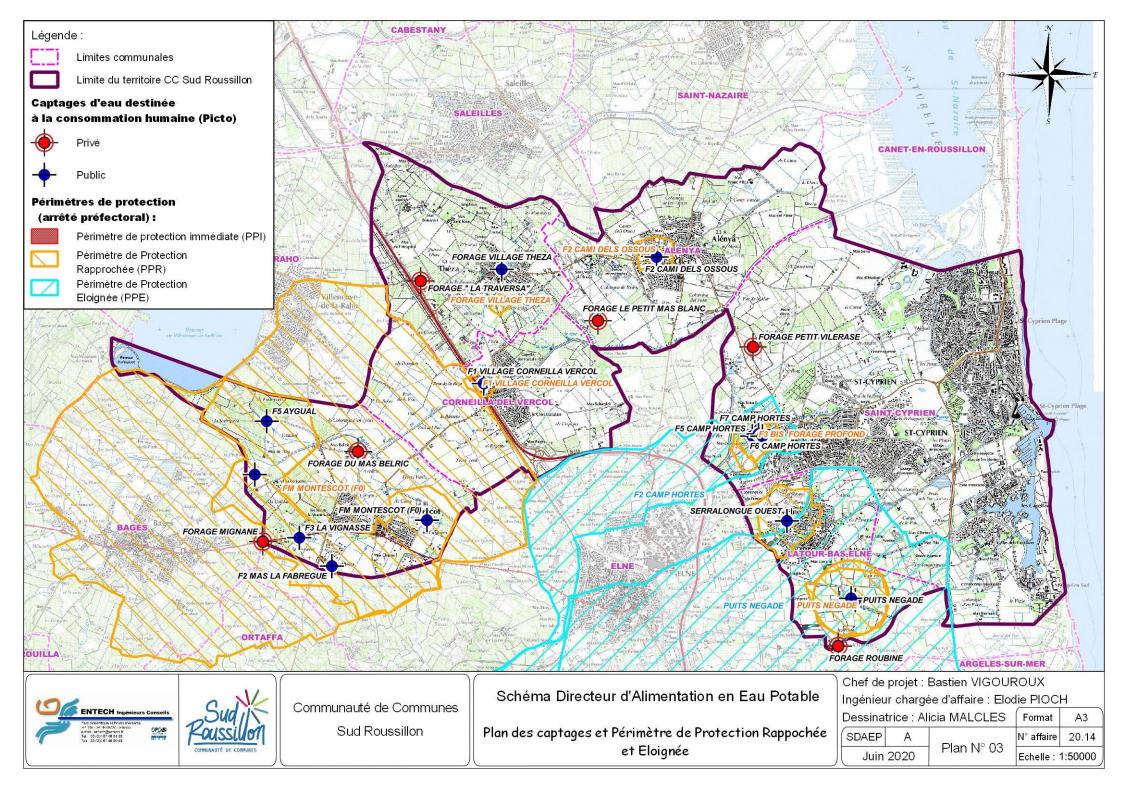


#### 2.5.2.1 GENERALITES ET VULNERABILITE DES EAUX SOUTERRAINES

La carte des masses d'eau souterraines de l'ensemble des communes est présentée ci-après.



L'ensemble des communes du territoire sont concernées par la masse d'eau souterraine « alluvions quaternaires du Roussillon » sur une partie de leur territoire (FRDG351).


Les communes de Latour-Bas-Elne, Saint-Cyprien et Montescot sont également concernées par la masse d'eau « multicouche pliocène du Roussillon » (FRDG243).

Le territoire de la communauté de communes Sud Roussillon est actuellement alimenté en totalité par ces deux aquifères.

| Ressource                          | Aquifère    | Commune d'implantation |
|------------------------------------|-------------|------------------------|
| Forage F2 « Camp de la Hortes »    | Quaternaire | Saint-Cyprien          |
| Forage F4Bis « Camp de la Hortes » | Quaternaire | Saint-Cyprien          |
| Forage F5 « Camp de la Hortes »    | Quaternaire | Saint-Cyprien          |
| Forage F6 « Camp de la Hortes »    | Quaternaire | Saint-Cyprien          |
| Forage F7 « Camp de la Hortes »    | Quaternaire | Saint-Cyprien          |
| Forage F3Bis « Camp de la Hortes » | Pliocene    | Saint-Cyprien          |
| Forage « Al Mouly »                | Pliocene    | Latour-Bas-Elne        |
| Projet de forage El Molinas        | Quaternaire | Latour-Bas-Elne        |
| Forage F2 Alenya                   | Pliocene    | Alenya                 |
| Forage Théza                       | Pliocene    | Theza                  |
| F1 Village de Corneilla            | Pliocene    | Corneilla-del-Vercol   |

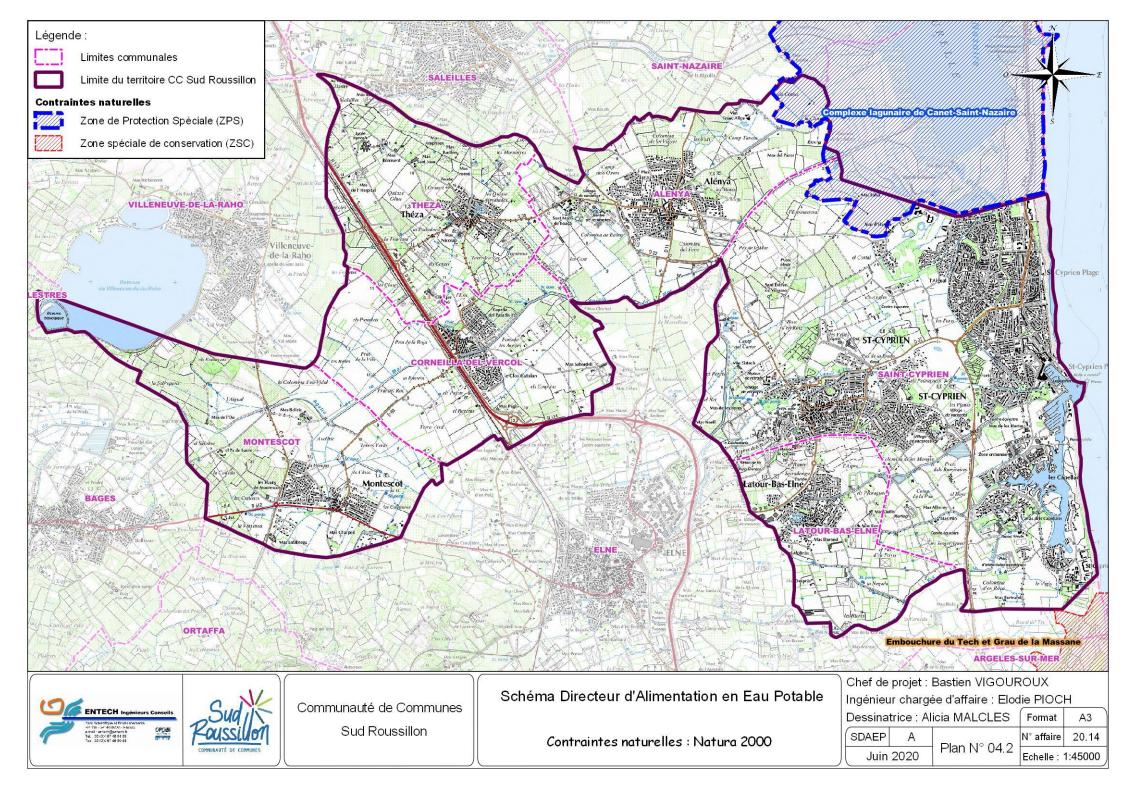
#### 2.5.2.2 PERIMETRES DE PROTECTION DES CAPTAGES

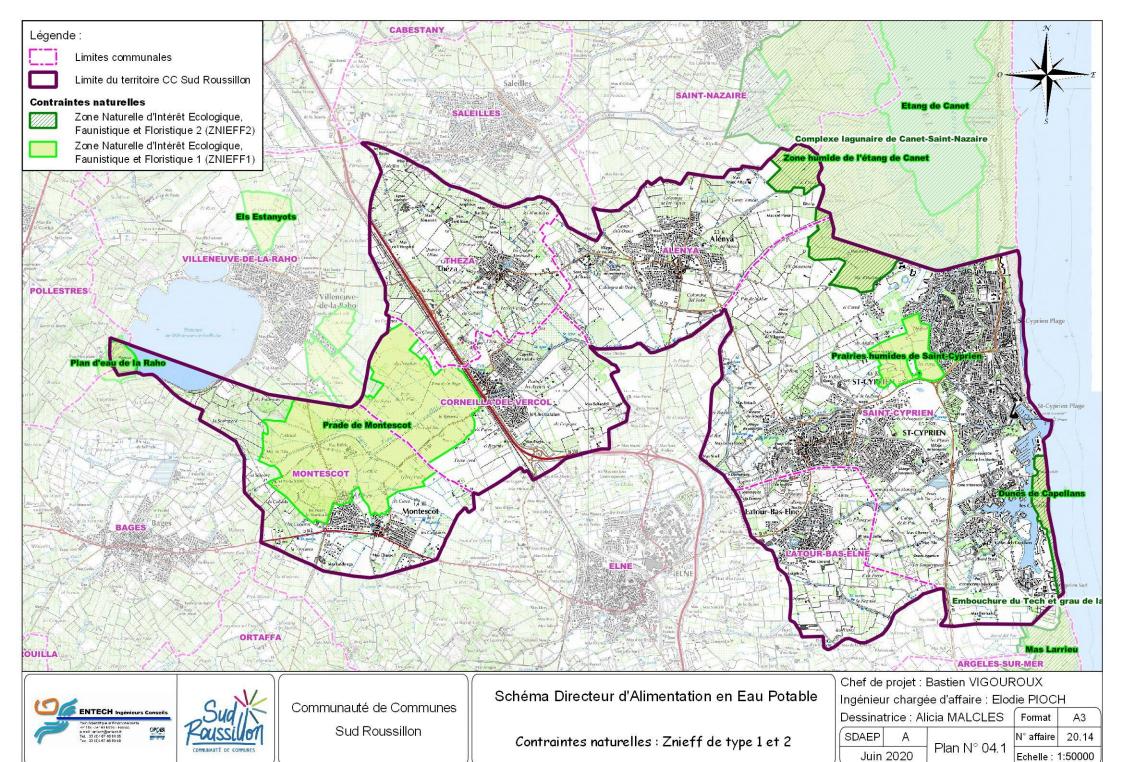
La carte suivante présente l'ensemble des captages et leur périmètre de protection répertoriés par l'ARS sur le territoire d'étude. L'ensemble des communes sont concernés par des périmètres de protection, qu'ils soient de protection immédiate (PPI), rapprochée (PPR) ou éloignée (PPE).

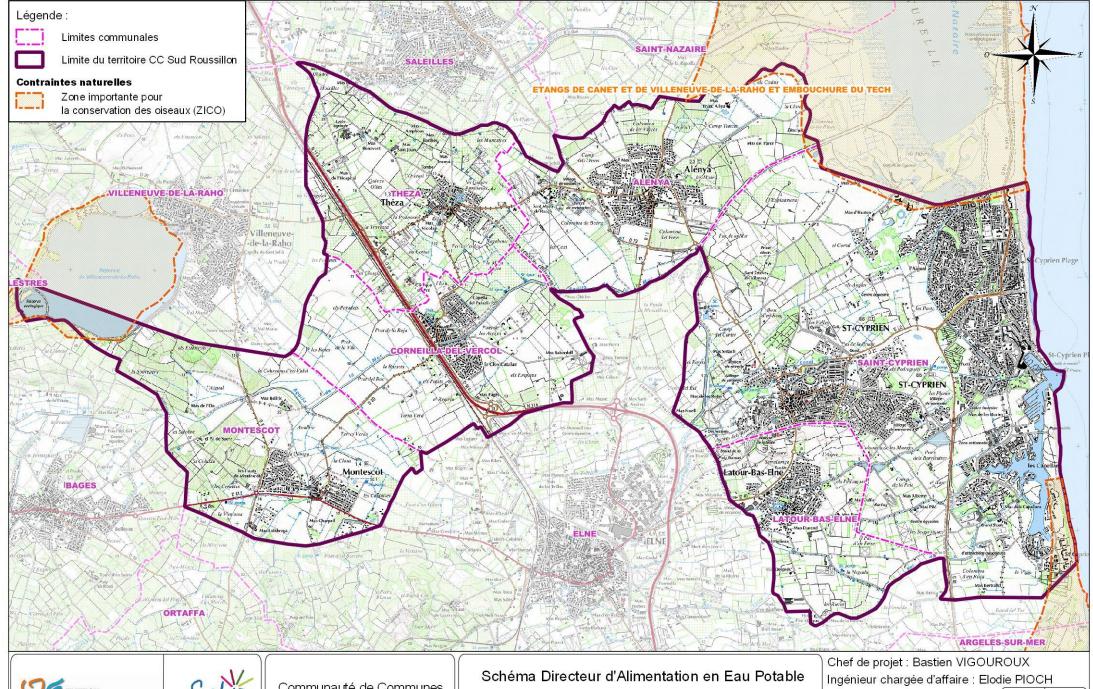


# 2.6 PATRIMOINE ENVIRONNEMENTAL

# 2.6.1 GENERALITES


Les différentes zones pouvant être rencontrées et les réglementations associées sont les suivantes :


| Zones naturelles                                                                                                                                                                                                                                                         | Définition                                                                                                                                                                                                                                        | Réglementations liées à la zone                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zones naturelles d'intérêt<br>écologique, faunistique et<br>floristique (ZNIEFF)                                                                                                                                                                                         | Inventaire scientifique du patrimoine nature                                                                                                                                                                                                      | Un espace inventorié en ZNIEFF ne bénéficie d'aucune protection spécifique à ce titre, il s'agit d'un inventaire qui n'a aucune portée juridique directe                                                                                                                                                                                                                                                |
| Zone importante pour la conservation des oiseaux (ZICO)  Les ZICO ont été désignées dans le cadre de la directive "Oiseaux" 79/409/CEE du 6 avril 1979 qui vise la conservation des oiseaux sauvages et la protection des milieux naturels indispensables à leur survie. |                                                                                                                                                                                                                                                   | Les ZICO n'ont pas de statuts juridiques particuliers, elles n'entraînent pas légalement de contraintes de gestion particulières.  Les plus appropriées à la conservation des oiseaux les plus menacés, sont classées totalement ou partiellement en Zones de Protection Spéciales.                                                                                                                     |
| Zone Natura 2000                                                                                                                                                                                                                                                         | Le réseau Natura 2000 concerne des sites naturels ou semi-naturels de l'Union Européenne ayant une grande valeur patrimoniale par la faune et la flore exceptionnelle qu'ils contiennent.                                                         | Le réseau Nature 2000 impose de vérifier que tout aménagement ne porte pas atteinte aux habitats ou espèces concernés (ZPS directive Oiseaux - ZSC directive Habitats).                                                                                                                                                                                                                                 |
| Les Espaces Naturels<br>Sensibles (ENS)                                                                                                                                                                                                                                  | Les ENS ont pour objectif de préserver la qualité des sites, des paysages, des milieux naturels mais également d'aménager ces espaces pour être ouverts au public, sauf exception justifiée par la fragilité du milieu naturel.                   | Aucune.  Il s'agit d'un outil de maîtrise foncière du département et des communes avec la mise en place de zone de préemption au titre des ENS.                                                                                                                                                                                                                                                         |
| Zone humide RAMSAR                                                                                                                                                                                                                                                       | Terrains exploités ou non, habituellement inondés ou gorgés d'eau douce, salée ou saumâtre de façon permanente ou temporaire; la végétation, quand elle existe, y est dominée par des plantes hydrophiles pendant au moins une partie de l'année. | Article L.211-1 et R214-1 du code de l'environnement. La rubrique 3.3.1.0 de la nomenclature Eau concerne spécifiquement l'assèchement, la mise en eau, l'imperméabilisation ou encore le remblai de zones humides. Elle exige une demande d'autorisation si la zone concernée est supérieure ou égale à 1ha. Pour les zones inférieures à 1ha et supérieures à 0,1 ha, une déclaration est nécessaire. |
| Acquisitions du<br>Conservatoire du Littoral                                                                                                                                                                                                                             | Grâce à la vigilance et l'expertise de ses 10 délégations de rivages, le Conservatoire acquiert les terrains dont la valeur écologique, paysagère et patrimoniale justifie la mise en place d'un dispositif de protection et de gestion.          | Tout projet situé sur une zone acquise par le Conservatoire du Littoral doit se conformer au plan de gestion de ce site et doit faire l'objet d'un accord et d'une convention avec le Conservatoire du Littoral.                                                                                                                                                                                        |


# 2.6.2 CONTEXTE SUR LA ZONE D'ETUDE

Les communes de la communauté de communes Sud Roussillon sont concernées par certaines de ces zones. Aucun ouvrage AEP (forage, réservoir, station de traitement) n'est situé dans l'emprise de celles-ci. Les cartes suivantes présentent les zones présentes sur le territoire

| Туре                   | Code National                               | Libellé                         | Communes concernées                  | Ouvrage<br>concerné |
|------------------------|---------------------------------------------|---------------------------------|--------------------------------------|---------------------|
|                        | 6620-5022                                   | Dunes de Capellans              | Saint-Cyprien                        |                     |
|                        | 0000-5031                                   | Prairie humide de Saint-Cyprien | Saint-Cyprien                        |                     |
| ZNIEFF de type 1       | 6618-5030                                   | Zone humide de l'étang de Canet | Saint-Cyprien et Alénya              | ]                   |
|                        | 6618-5028                                   | Etang de Canet                  | Saint-Cyprien et Alénya              | Aucun               |
|                        | 0000-5035                                   | Prade de Montescot              | Corneilla-Del-Vercol et<br>Montescot |                     |
| ZNIEFF de type 2       | ype 2 6618-0000 Complexe lagunaire de Canet |                                 | Saint-Cyprien et Alénya              |                     |
| Zone Natura 2000 (ZPS) | FR9101465                                   | Complexe lagunaire de Canet     | Saint-Cyprien et Alénya              |                     |











Communauté de Communes Sud Roussillon

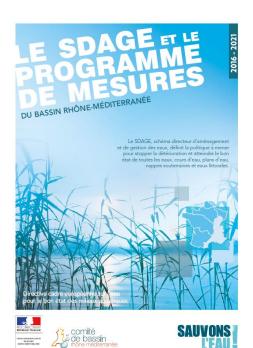
Contraintes naturelles : Zone importante pour la conservation des oiseaux (ZICO)

|           | mgomoc  | 0110191    | o a an an o . Lio |                  | 383   |  |  |
|-----------|---------|------------|-------------------|------------------|-------|--|--|
|           | Dessina | trice : Al | icia MALCLES      | Format           | А3    |  |  |
|           | SDAEP   | Α          | Diam NO 04 2      | N° affaire       | 20.14 |  |  |
| Juin 2020 |         |            | Plan N° 04.3      | Echelle : 1:4500 |       |  |  |

# 2.7 PATRIMOINE CULTUREL

Le territoire intercommunal ne compte aucun site inscrit et site classé.

#### 2.8 CONTEXTE REGLEMENTAIRE


#### 2.8.1 SDAGE RMC

Après leur adoption par le Comité de bassin le 20 novembre 2015, le SDAGE Rhône-Méditerranée-Corse 2016-2021 ainsi que le programme de mesures associé ont été approuvés le 21 décembre 2015 par le Préfet coordonnateur de bassin, Préfet de la Région Rhône-Alpes.

Les orientations fondamentales proposées dans ce SDAGE reprennent les 8 orientations du précédent SDAGE en les actualisant et une nouvelle orientation est ajoutée : s'adapter aux effets du changement climatique.

Les 9 nouvelles orientations sont les suivantes :

- S'adapter aux effets du changement climatique,
- Privilégier la prévention et les interventions à la source pour plus d'efficacité,
- Concrétiser la mise en œuvre du principe de nondégradation des milieux aquatiques,
- Prendre en compte les enjeux économiques et sociaux des politiques de l'eau et assurer une gestion durable des services publics d'eau et d'assainissement,
- Renforcer la gestion de l'eau par bassin versant et assurer la cohérence entre aménagement du territoire et gestion de l'eau,
- Lutter contre les pollutions, en mettant la priorité sur les pollutions par les substances dangereuses et la protection de la santé,
- Préserver et restaurer le fonctionnement naturel des milieux aquatiques et des zones humides,
- Atteindre l'équilibre quantitatif en améliorant le partage de la ressource en eau et en anticipant l'avenir,
- Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques.





- Les masses d'eau superficielles :
  - √ FRDR233 : Le cours d'eau Agouille de la Mar
  - √ FRDR232b : Le Réart à l'aval de la confluence avec le Centerrane
- · Les masses d'eau souterraines
  - √ FRDG351 : Alluvions quaternaires du Roussillon
     √ FRDG243 : Multicouche pliocène du Roussillon

#### 2.8.1.1 FRDR233 : LE COURS D'EAU AGOUILLE DE LA MAR

L'objectif d'état écologique défini dans le SDAGE pour ce cours d'eau est « bon potentiel » à l'horizon 2027. Le statut actuel de la masse d'eau est MEFM (Masse d'Eau Fortement Modifiée). Les paramètres devant faire l'objet d'une adaptation sont les suivants : pesticides, matières organiques et oxydables, substances dangereuses et morphologie.

Le cours d'eau est considéré MEFM du fait des activités spécifiées suivantes : la protection des zones agricoles contre les crues et les infrastructures. Les types de modifications physiques rencontrées sont les suivantes : chenalisation/ rectification/ stabilisation (protection de berge) / digue.

Les mesures pour atteindre les objectifs de bon état sont les suivantes :

- Pollution diffuse par les pesticides :
  - √ AGR0303 Limiter les apports en pesticides agricoles et/ou utiliser des pratiques alternatives au traitement phytosanitaire
  - √ AGR0401 Mettre en place des pratiques pérennes (bio, surface en herbe, assolements, maîtrise foncière)
  - √ AGR0802 Réduire les pollutions ponctuelles par les pesticides agricoles
  - √ COL0201 Limiter les apports diffus ou ponctuels en pesticides non agricoles et/ou utiliser des pratiques alternatives
- Pollution ponctuelle par les substances (hors pesticides) :
  - √ GOU0101 Réaliser une étude transversale (plusieurs domaines possibles)
- Pollution ponctuelle urbaine et industrielle hors substances :
  - √ GOU0101 Réaliser une étude transversale (plusieurs domaines possibles)

#### 2.8.1.2 FRDR232B: LE REART A L'AVAL DE LA CONFLUENCE AVEC LE CENTERRANE

L'objectif d'état écologique défini dans le SDAGE pour ce cours d'eau est « bon potentiel » à l'horizon 2027 (actuellement médiocre). Le statut actuel de la masse d'eau est MEFM (Masse d'Eau Fortement Modifiée). Les paramètres devant faire l'objet d'une adaptation sont les suivants : pesticides, morphologie.

Le cours d'eau est considéré MEFM du fait des activités spécifiées suivantes : la protection des zones urbaine contre les crues et des infrastructures. Les types de modifications physiques rencontrées sont les suivantes : chenalisation/ rectification/ stabilisation (protection de berge) / dique.

Les mesures pour atteindre les objectifs de bon état sont les suivantes :

- AGR0303 Limiter les apports en pesticides agricoles et/ou utiliser des pratiques alternatives au traitement phytosanitaire
- AGR0401 Mettre en place des pratiques pérennes (bio, surface en herbe, assolements, maîtrise foncière)
- AGR0802 Réduire les pollutions ponctuelles par les pesticides agricoles

#### 2.8.1.3 FRDG351: ALLUVIONS QUATERNAIRES DU ROUSSILLON

La masse d'eau est dans un état écologique bon. L'état chimique est considéré comme bon.

Les mesures pour atteindre les objectifs de bon état sont les suivantes :

- Pression à traiter : Pollution diffuse par les nutriments
  - √ RES0802 Améliorer la qualité d'un ouvrage de captage
- Pression à traiter : Pollution diffuse par les pesticides
  - $\sqrt{}$  AGR0303 Limiter les apports en pesticides agricoles et/ou utiliser des pratiques alternatives au traitement phytosanitaire
  - √ AGR0401 Mettre en place des pratiques pérennes (bio, surface en herbe, assolements, maîtrise foncière)
  - $\sqrt{}$  COL0201 Limiter les apports diffus ou ponctuels en pesticides non agricoles et/ou

Les mesures spécifiques du registre des zones protégées sont les suivantes :

- Directive concernée Protection des eaux contre la pollution par les nitrates d'origine agricole
  - √ AGR0201 Limiter les transferts de fertilisants et l'érosion dans le cadre de la Directive nitrates
  - AGR0301 Limiter les apports en fertilisants et/ou utiliser des pratiques adaptées de fertilisation, dans le cadre de la Directive
  - √ AGR0803 Réduire la pression azotée liée aux élevages dans le cadre de le Directive nitrates

#### 2.8.1.4 FRDG243: MULTICOUCHE PLIOCENE DU ROUSSILLON

La masse d'eau est considérée en déséquilibre quantitatif avec des intrusions salées, le bon état écologique n'est pas atteint. Il est reporté à 2027 L'état chimique est considéré comme bon.

Les mesures pour atteindre les objectifs de bon état sont les suivantes :

- Pression à traiter : Prélèvements :
  - RES0101 : Réaliser une étude globale ou un schéma directeur visant à préserver la ressource en eau
  - $\sqrt{\phantom{a}}$  RES0201 : Mettre en place un dispositif d'économie d'eau dans le domaine de l'agriculture
  - √ RES0202 : Mettre en place un dispositif d'économie d'eau auprès des particuliers ou des collectivités
  - √ RES0301 : Mettre en place un Organisme Unique de Gestion Collective en ZRE
  - RES0303 : Mettre en place les modalités de partage de la ressource en eau
- Pression à traiter : Pollution diffuse par les nutriments
  - √ RES0802 Améliorer la qualité d'un ouvrage de captage
- Pression à traiter : Pollution diffuse par les pesticides
  - $\sqrt{}$  AGR0303 Limiter les apports en pesticides agricoles et/ou utiliser des pratiques alternatives au traitement phytosanitaire
  - √ AGR0401 Mettre en place des pratiques pérennes (bio, surface en herbe, assolements, maîtrise foncière)
  - √ AGR0503 : Elaborer un plan d'action sur une seule AAC
  - COL0201 Limiter les apports diffus ou ponctuels en pesticides non agricoles et/ou utiliser des pratiques alternatives

Les mesures spécifiques du registre des zones protégées sont les suivantes :

- Directive concernée Protection des eaux contre la pollution par les nitrates d'origine agricole
  - $\sqrt{}$  AGR0201 Limiter les transferts de fertilisants et l'érosion dans le cadre de la Directive nitrates
  - $\sqrt{}$  AGR0301 Limiter les apports en fertilisants et/ou utiliser des pratiques adaptées de fertilisation, dans le cadre de la Directive
  - AGR0803 Réduire la pression azotée liée aux élevages dans le cadre de le Directive nitrates

#### 2.8.2 SAGE DES NAPPES PLIO-QUATERNAIRES DE LA PLAINE DU ROUSSILLON

Le territoire de la communauté de communes Sud Roussillon est concerné par le SAGE « Nappes plio-quaternaires de la plaine du Roussillon ».

Le SAGE des nappes du Roussillon a été adopté par la CLE du 13 février 2020 et a été approuvé par le Préfet des Pyrénées-Orientales et la Préfète de l'Aude le 3 avril 2020. Il est donc désormais en vigueur.

Le périmètre du SAGE est de 900 km² et s'étend sur l'ensemble de la plaine du Roussillon. L'état des lieux a été validé le 3 juillet 2012 et le diagnostic le 10 octobre 2012.

Six orientations stratégiques ont été adoptées devant le constat de l'état des lieux desquelles déclinent les objectifs généraux suivants :

- Orientation stratégique A : Articuler préservation des nappes et aménagement du territoire pour préserver l'avenir de la plaine du Roussillon. L'Objectif Général qui en découle est :
  - ✓ Articuler préservation des nappes et aménagement du territoire pour préserver l'avenir de la plaine du Roussillon.
- Orientation stratégique B : Partager l'eau des nappes entre les différents usages, dans le respect de l'équilibre quantitatif. Les Objectifs Généraux qui en découlent sont :
  - Acter un principe de conservation du Pliocène, (ne pas augmenter les prélèvements actuels dans le Pliocène),
  - √ Fixer des principes de gestion des nappes quaternaires,
  - √ Elaborer à l'échelle de la plaine du Roussillon un « schéma global des ressources »
  - Créer un organisme unique de gestion concerté permettant d'organiser les autorisations de prélèvements agricoles
  - √ Maintenir les capacités de recharge de la ressource,
  - √ Prévenir et gérer les situations de crise
  - √ Améliorer le suivi quantitatif des nappes et des prélèvements,
- Orientation stratégique C : Réguler la demande en eau par une politique d'économies volontaristes. Les Objectifs Généraux qui en découlent sont :
  - √ Rationaliser tous les prélèvements,
  - √ Améliorer les rendements des réseaux d'eau potable
  - √ Inciter les différentes catégories d'utilisateurs à réaliser des économies d'eau
  - √ Inciter les abonnés des services d'eau potable à réaliser des économies d'eau
  - √ Encourager la substitution des prélèvements Pliocène vers d'autres ressources.
- Orientation stratégique D : Connaître tous les forages et faire en sorte qu'ils soient de bonne qualité. Les Objectifs Généraux qui en découlent sont :
  - √ Viser la connaissance exhaustive et la régularité des forages non domestiques et des volumes prélevés
  - √ Améliorer la connaissance des forages domestiques
  - √ Viser une qualité des puits et forages conforme aux règles de l'art,
  - √ Encadrer les activités de géothermie de minime importance (GMI)
- Orientation stratégique E : Protéger les captages AEP, en adaptant la réponse à leur niveau de contamination ou de vulnérabilité. Les Objectifs Généraux qui en découlent sont :
  - Appliquer une réponse appropriée aux différentes situations de captages AEP (curatif sur des captages déjà contaminés)
  - $\sqrt{\phantom{a}}$  Protéger la qualité de l'eau brute des nappes dans les « zones de sauvegarde »

#### **ENTECH Ingénieurs Conseils**

SAGE des nappes du Roussillor

Plan d'Aménagement et de

Gestion Durable (PAGD)

- √ Réduire les sources de contamination chimiques
- √ Améliorer la connaissance de l'état qualitatif des nappes
- Orientation stratégique F : Organiser la gouvernance pour une gestion efficace des nappes. Les Objectifs Généraux qui en découlent sont :
  - √ Doter le SAGE d'un dispositif de gouvernance adapté
  - √ Mobiliser et se coordonner avec les autres démarches de gestion de l'eau
  - √ Faciliter l'acquisition et le partage des connaissances
  - √ Développer la communication et la sensibilisation

Les enjeux définis dans le SAGE seront pris en compte dans le cadre du schéma directeur d'alimentation en eau potable de la Communauté de communes du Sud Roussillon.

#### 2.8.3 CONTRAT DU BASSIN VERSANT ETANG DE CANET - SAINT NAZAIRE

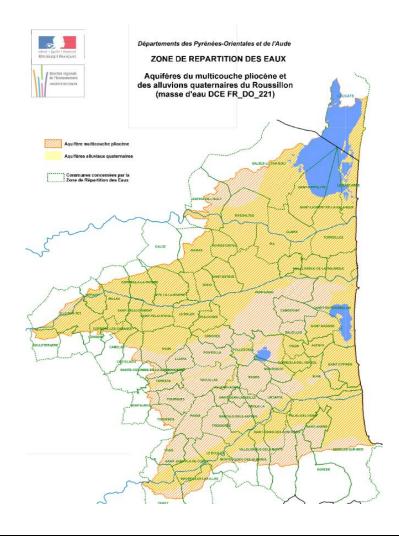
La communauté de communes du Sud Roussillon est concernée par le contrat « Etang de Canet Saint-Nazaire ». Celui-ci est en date du 2 juillet 2012. Un comité de rivière a de plus été mis en place le 28 juin 2013. Un avant-projet du nouveau contrat de bassin versant est en date d'aout 2015.

Ce contrat a pour but de mettre en œuvre les moyens pour parvenir aux objectifs d'atteinte du bon état des eaux fixés par la Directive Cadre sur l'Eau.

Les enjeux sont les suivants :

- Lutte contre le comblement accéléré de l'étang,
- · Prévention contre les risques inondations,
- Amélioration de la qualité de l'eau,
- Préservation et valorisation des écosystèmes aquatiques.

L'objectif principal est alors de préserver ce milieu lagunaire très sensible, menacé par de nombreux facteurs d'origine anthropique et dont la surface se réduit de manière significative.


#### 2.8.4 ARRETES DE ZONE DE REPARTITION DES EAUX (ZRE)

Les zones de répartition des eaux (ZRE) sont des zones où est constatée une insuffisance, autre qu'exceptionnelle, des ressources par rapport aux besoins. Elles sont définies afin de faciliter la conciliation des intérêts des différents utilisateurs de l'eau.

Les nappes du plio-quaternaire connaissent des seuils plus restrictifs dus à la fragilité de la ressource en eau. Tout nouveau prélèvement à usage non domestique ou assimilé est soumis à autorisation dès que la capacité maximale de prélèvement est supérieure ou égale à 8 m3 par heure et à déclaration dans les autres cas.

Les communes de la communauté de communes sont ainsi concernées par deux zones de répartition des eaux : « Aquifère Pliocène du Roussillon » d'après l'arrêté du 21 juin 2010 et « Aquifère quaternaire du Roussillon » d'après l'arrêté du 9 avril 2010.

La carte suivante présente la répartition de ces ZRE et les communes concernées.



Sont concernés par la ZRE « Aquifère Pliocène du Roussillon » tous les prélèvements d'eau non domestiques dans l'aquifère pliocène de la plaine du Roussillon, qu'ils soient permanents ou temporaires, issus d'un forage, d'un puits, ou d'un ouvrage souterrain et effectués par pompage, drainage, dérivation ou tout autre procédé.

L'arrêté prévoit l'abaissement des seuils de déclaration et d'autorisation des prélèvements relevant du code de l'environnement. Ainsi en application de la rubrique 1.3.1.0, les prélèvements non domestiques inférieurs à 8 m³/h sont soumis à déclaration et tout prélèvement non domestique supérieur à 8 m³/h est soumis à autorisation.

Concernant la ZRE « Aquifère quaternaire du Roussillon », sont concernés toutes les eaux souterraines rencontrées dès la surface du sol au sein des aquifères des alluvions quaternaires. L'arrêté prévoit un abaissement des seuils d'autorisation et de déclaration par le biais de l'application de la rubrique 1.3.1.0 de l'article L.214-1 du Code de l'Environnement (à l'exception des prélèvements inférieurs à 1000 m3/an réputés domestiques). Ainsi, tout prélèvement non domestique de capacité inférieure à 8m3/h sont soumis à déclaration, et tout prélèvement dont la capacité est supérieure à 8m3/h sont soumis à autorisation.

# 2.8.5 ETUDE DES VOLUMES PRELEVABLES DES NAPPES PLIO-QUATERNAIRES DE LA PLAINE DU ROUSSILLON

Une étude sur la répartition et le partage des eaux a été réalisée sur les aquifères Quaternaire et Pliocène.

Cette étude intervient dans le cadre de la Loi sur l'eau et les milieux aquatiques (LEMA) du 30 décembre 2006 et du décret du 24 septembre 2007 relatif à l'organisme unique chargé de la gestion

collective des prélèvements en eau, ainsi que la circulaire du 30 juin 2008 relative à la résorption des déficits quantitatifs en matière de prélèvement d'eau. D'après ces textes, les bassins versants situés en ZRE doivent faire l'objet de mesures de gestion des prélèvements qui pèsent sur la ressource naturelle. C'est le cas de l'aquifère Pliocène, c'est donc dans ce contexte et dans celui du SAGE en cours d'élaboration que s'inscrit cette étude de volumes prélevables.

Elle vise à faire un état des lieux des pressions exercées sur les nappes plio-quaternaires du Roussillon en termes d'usages et de volumes, mais aussi à définir les volumes maximum que l'on peut prélever sans engendrer de dégradation qualitative ou de déséquilibre quantitatif de la ressource.

Un inventaire des prélèvements (puits et forages) effectués dans les nappes du Quaternaire et du Pliocène a donc été réalisé.

Les volumes prélevables ont ensuite été déterminés à la fois à partir des prélèvements répertoriés, mais également à partir des suivis piézométriques effectués sur les nappes. L'ensemble des informations recueillies a été regroupé dans une base de données homogénéisée, et les informations ont été croisées entre elles.

Les résultats de cette étude montrent alors que les volumes autorisés s'élèvent à 65 Mm³/an sur le Pliocène, et les volumes prélevés moyens à 46.3 Mm³/an sur l'ensemble de la plaine.

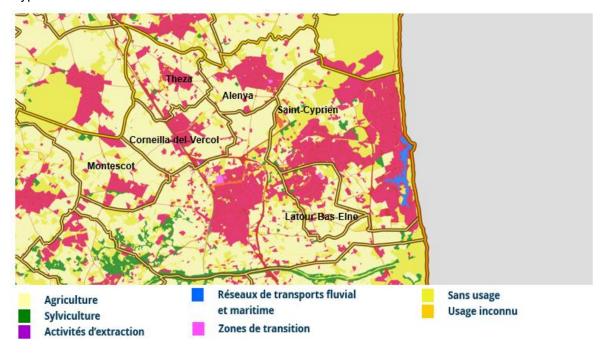
La majorité des volumes prélevés est destinée à l'alimentation en eau potable, l'agriculture et l'arrosage des jardins et espaces verts. Les autres usages sont minoritaires.

#### L'étude conclut que :

- Les volumes prélevables sur la nappe du Pliocène correspondent aux volumes prélevés actuellement (la situation « actuelle » correspondant à l'année 2010, année de référence de l'étude débits prélevables)
- Il n'y a donc pas de marge de prélèvement possible sur cette ressource à l'échelle de la plaine du Roussillon
- Les autorisations actuelles de prélèvements doivent être revues à la baisse pour tenir compte de ces volumes prélevables

Faisant suite à cette étude, la DDTM est actuellement en cours de révision des autorisations réglementaires des différentes collectivités prélevant dans la nappe Pliocène. La communauté de communes Sud Roussillon disposant de captages dans cette aquifère, celleci est pleinement concernée par cette problématique.

La diversification des ressources de la CC est donc un des axes déterminants du présent SDAEP.


# 3 POPULATION ET DISPOSITIONS LIEES A L'URBANISME

# 3.1 OCCUPATION DES SOLS – URBANISATION

# 3.1.1 OCCUPATION DES SOLS

Le territoire de l'ensemble de la communauté de communes est composé essentiellement de zones agricoles, de zones de production secondaires, tertiaires et de zones à usage résidentiel.

Des zones sans usage et des zones de sylviculture sont également présentes ponctuellement. Une zone de réseaux et transports fluvial et maritime est observée à l'est de la commune de Saint-Cyprien.



#### 3.1.2 URBANISME

Le tableau suivant précise les documents d'urbanisme en vigueur sur chacune des communes.

| Communes             | Document d'urbanisme en vigueur | Date d'approbation                                              |  |  |
|----------------------|---------------------------------|-----------------------------------------------------------------|--|--|
| Alenya               | PLU                             | Modification le 2 décembre 2019                                 |  |  |
| Corneilla-Del-Vercol | PLU                             | Juin 2011 et modifié en septembre 2018.                         |  |  |
| Latour-Bas-Elne      | PLU                             | 28 septembre 2017, avec modification en date du 7 février 2019. |  |  |
| Montescot            | PLU                             | Modification en juillet 2014                                    |  |  |
| Saint-Cyprien        | PLU                             | 11 décembre 2013                                                |  |  |
| Théza                | PLU                             | Modification en mars 2017                                       |  |  |

A noter qu'une étude démographique est en cours sur le territoire d'étude. Les résultats de celle-ci seront intégrés au présent SDAEP.

# 3.2 Donnees demographiques actuelles

Les données démographiques sont issues des recensements organisés par l'INSEE, les derniers en date étant celui de 2017 (publiés en juin 2020).

#### 3.2.1 LOGEMENTS

Le tableau suivant présente la répartition des logements :

|                                                  | 1968  | 1975  | 1982         | 1990   | 1999   | 2006   | 2011   | 2016   | 2017   |
|--------------------------------------------------|-------|-------|--------------|--------|--------|--------|--------|--------|--------|
|                                                  |       |       | Alenya       |        |        |        |        |        |        |
| Ensemble                                         | 248   | 403   | 529          | 665    | 1 049  | 1 339  | 1 596  | 1 862  | 1 843  |
| Résidences principales                           | 203   | 305   | 393          | 552    | 863    | 1 108  | 1 303  | 1 538  | 1 557  |
| Résidences secondaires et logements occasionnels | 22    | 40    | 68           | 60     | 126    | 180    | 213    | 168    | 148    |
| Logements vacants                                | 23    | 58    | 68           | 53     | 60     | 51     | 80     | 156    | 138    |
| Hab/résidence principale                         | 3,34  | 3,30  | 3,08         | 2,83   | 2,69   | 2,51   | 2,46   | 2,30   | 2,31   |
|                                                  |       |       | illa-del-Ver | col    |        |        |        |        |        |
| Ensemble                                         | 256   | 299   | 383          | 583    | 628    | 831    | 1 014  | 1 056  | 1 088  |
| Résidences principales                           | 215   | 245   | 315          | 495    | 565    | 764    | 913    | 936    | 964    |
| Résidences secondaires et logements occasionnels | 13    | 8     | 19           | 42     | 31     | 28     | 53     | 42     | 43     |
| Logements vacants                                | 28    | 46    | 49           | 46     | 32     | 39     | 48     | 78     | 80     |
| Hab/résidence principale                         | 2,94  | 3,09  | 3,06         | 2,93   | 2,66   | 2,54   | 2,41   | 2,38   | 2,38   |
|                                                  |       |       | our-Bas-Elne | 9      |        |        |        |        |        |
| Ensemble                                         | 222   | 314   | 419          | 613    | 775    | 911    | 1 006  | 1 426  | 1 521  |
| Résidences principales                           | 197   | 233   | 330          | 486    | 636    | 768    | 861    | 1 104  | 1 196  |
| Résidences secondaires et logements occasionnels | 6     | 75    | 57           | 85     | 83     | 109    | 93     | 235    | 219    |
| Logements vacants                                | 19    | 6     | 32           | 42     | 56     | 35     | 52     | 87     | 106    |
| Hab/résidence principale                         | 3,20  | 2,84  | 2,86         | 2,77   | 2,69   | 2,61   | 2,49   | 2,37   | 2,34   |
|                                                  |       | N     | lontescot    |        |        |        |        |        |        |
| Ensemble                                         | 88    | 181   | 244          | 451    | 569    | 659    | 717    | 791    | 824    |
| Résidences principales                           | 72    | 153   | 209          | 372    | 503    | 590    | 653    | 715    | 745    |
| Résidences secondaires et logements occasionnels | 10    | 21    | 27           | 38     | 47     | 45     | 40     | 42     | 45     |
| Logements vacants                                | 6     | 7     | 8            | 41     | 19     | 24     | 25     | 33     | 34     |
| Hab/résidence principale                         | 3,07  | 3,08  | 2,93         | 3,03   | 2,73   | 2,64   | 2,59   | 2,44   | 2,30   |
|                                                  |       | Sa    | int-Cyprien  |        |        |        |        |        |        |
| Ensemble                                         | 2 240 | 3 575 | 6 295        | 11 887 | 14 473 | 15 405 | 15 841 | 16 946 | 17 111 |
| Résidences principales                           | 779   | 1 039 | 1 653        | 2 831  | 3 838  | 4 818  | 5 101  | 5 593  | 5 698  |
| Résidences secondaires et logements occasionnels | 1 323 | 1 962 | 4 224        | 8 648  | 10 316 | 10 288 | 10 439 | 11 307 | 11 387 |
| Logements vacants                                | 138   | 574   | 418          | 408    | 319    | 299    | 300    | 45     | 26     |
| Hab/résidence principale                         | 3,33  | 2,90  | 2,66         | 2,43   | 2,23   | 2,10   | 2,05   | 1,90   | 1,84   |
|                                                  |       | ,     | Théza        | ,      | •      | ,      | •      | ,      | •      |
| Ensemble                                         | 209   | 266   | 328          | 411    | 515    | 573    | 669    | 923    | 960    |
| Résidences principales                           | 182   | 217   | 285          | 352    | 458    | 510    | 603    | 823    | 864    |
| Résidences secondaires et logements occasionnels | 12    | 6     | 12           | 11     | 33     | 21     | 11     | 35     | 41     |
| Logements vacants                                | 15    | 43    | 31           | 48     | 24     | 42     | 54     | 65     | 55     |
| Hab/résidence principale                         | 3,04  | 3,59  | 3,26         | 2,88   | 2,73   | 2,62   | 2,50   | 2,44   | 2,36   |
|                                                  |       |       | TOTAL        |        |        |        |        |        |        |
| Ensemble                                         | 3 263 | 5 038 | 8 198        | 14 610 | 18 009 | 19 718 | 20 843 | 23 004 | 23 347 |
| Résidences principales                           | 1 648 | 2 192 | 3 185        | 5 088  | 6 863  | 8 558  | 9 434  | 10 709 | 11 024 |
| Résidences secondaires et logements occasionnels | 1 386 | 2 112 | 4 407        | 8 884  | 10 636 | 10 671 | 10 849 | 11 829 | 11 883 |
| Logements vacants                                | 229   | 734   | 606          | 638    | 510    | 490    | 559    | 464    | 439    |
| Hab/résidence principale                         | 3,22  | 3,05  | 2,85         | 2,63   | 2,44   | 2,31   | 2,25   | 2,13   | 2,08   |

Durant la période 1968-2017, la commune de Saint-Cyprien a vu son nombre de logement total multiplié par 8. Son nombre de logement secondaire s'est multiplié par 10.

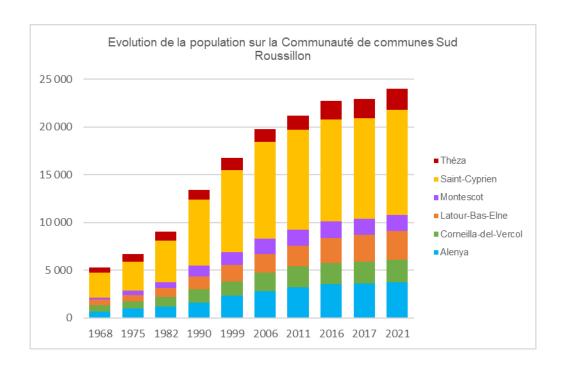
Les autres communes ont également subi une forte croissance tout au long de cette période, plus orientée sur les logements permanents que secondaires.

D'autre part, le nombre d'habitants par résidences principales est en constante diminution. Il est ainsi passé d'environ 3.2 habitant par habitation à 2.1 entre 1968 et 2017.

Le nombre total de logements présents sur le territoire est estimé à environ 23 350 en 2017.

#### 3.2.2 POPULATION PERMANENTE

Le tableau suivant présente l'évolution de la population permanente sur l'ensemble des communes :


|                         | 1968  | 1975  | 1982  | 1990        | 1999     | 2006   | 2011   | 2016   | 2017   | 2021   |
|-------------------------|-------|-------|-------|-------------|----------|--------|--------|--------|--------|--------|
| Alenya                  |       |       |       |             |          |        |        |        |        |        |
| Population              | 678   | 1 006 | 1 211 | 1 562       | 2 318    | 2 780  | 3 208  | 3 534  | 3 601  | 3 730  |
| Taux d'évolution annuel | -     | 5,8%  | 2,7%  | 3,2%        | 4,5%     | 2,6%   | 2,9%   | 2,0%   | 1,9%   | 0,9%   |
|                         |       |       | C     | orneilla-de | l-Vercol |        |        |        |        |        |
| Population              | 633   | 756   | 965   | 1 450       | 1 505    | 1 938  | 2 198  | 2 232  | 2 293  | 2 348  |
| Taux d'évolution annuel |       | 2,6%  | 3,5%  | 5,2%        | 0,4%     | 3,7%   | 2,5%   | 0,3%   | 2,7%   | 0,6%   |
|                         |       |       |       | Latour-Bas  | s-Elne   |        |        |        |        |        |
| Population              | 631   | 661   | 945   | 1 346       | 1 711    | 2 001  | 2 148  | 2 614  | 2 797  | 3 021  |
| Taux d'évolution annuel | -     | 0,7%  | 5,2%  | 4,5%        | 2,7%     | 2,3%   | 1,4%   | 4,0%   | 7,0%   | 1,9%   |
|                         |       | •     |       | Montes      | cot      |        |        |        |        |        |
| Population              | 221   | 471   | 612   | 1 128       | 1 375    | 1 559  | 1 690  | 1 744  | 1 712  | 1 720  |
| Taux d'évolution annuel |       | 11,4% | 3,8%  | 7,9%        | 2,2%     | 1,8%   | 1,6%   | 0,6%   | -1,8%  | 0,1%   |
|                         |       |       |       | Saint-Cyp   | rien     |        |        |        |        |        |
| Population              | 2 592 | 3 012 | 4 405 | 6 892       | 8 573    | 10 140 | 10 438 | 10 632 | 10 511 | 10 989 |
| Taux d'évolution annuel |       | 2,2%  | 5,6%  | 5,8%        | 2,5%     | 2,4%   | 0,6%   | 0,4%   | -1,1%  | 1,1%   |
|                         |       |       |       | Théza       | 3        |        |        |        |        |        |
| Population              | 554   | 780   | 929   | 1 013       | 1 252    | 1 334  | 1 509  | 2 011  | 2 040  | 2 183  |
| Taux d'évolution annuel | -     | 5,0%  | 2,5%  | 1,1%        | 2,4%     | 0,9%   | 2,5%   | 5,9%   | 1,4%   | 1,7%   |
|                         |       |       |       | TOTA        |          |        |        |        |        |        |
| Population              | 5 309 | 6 686 | 9 067 | 13 391      | 16 734   | 19 752 | 21 191 | 22 767 | 22 954 | 23 991 |
| Taux d'évolution annuel | -     | 3,3%  | 4,4%  | 5,0%        | 2,5%     | 2,4%   | 1,4%   | 1,4%   | 0,8%   | 1,1%   |

Entre 1968 et 1990, l'ensemble des communes connaissent une croissance démographique forte avec un taux de croissance moyen de l'ordre de 3.5 à 5%.

Depuis les années 1990 on observe un ralentissement progressif de la croissance démographique sur l'ensemble du territoire. Ainsi entre 2006 et 2016, le taux d'évolution n'est plus que de 1.4% sur l'ensemble du territoire.

L'évolution de la population est néanmoins très variable en fonction des communes. Ainsi les communes d'Alenya, Corneilla del Vercol et Théza continuent sur cette même période à avoir des taux de croissance élevé quand celle-ci ralentie sur les communes de Saint-Cyprien et Montescot.

La population totale permanente du territoire est estimée à environ 24 000 habitant en 2021.



#### 3.2.3 POPULATION SAISONNIERE

La population saisonnière est liée à la fois aux résidences secondaires et aux structures d'accueil touristiques.

Les données ci-après proviennent des recensements de l'INSEE.

Selon celles-ci, les communes de Corneill-del-Vercol, Montescot et Théza ne disposent pas de structures d'accueil touristique en dehors des résidences secondaires présentes sur leur territoire au contraire des communes d'Alénya, Latour Bas Elne et Saint Cyprien.

Nous avons retenu les hypothèses suivantes :

- Un ratio de 4 habitants par résidence secondaire,
- Un ratio de 6 personnes par emplacement de camping,
- Un ratio de 2 personnes par chambre d'hôtel,
- Un ratio de 2 personnes par lit pour les autres établissements.

Le tableau suivant synthétise la répartition de la population saisonnière sur les communes de la CC Sud Roussillon pour l'année 2020 selon les données INSEE.

La population saisonnière est d'environ 60 500 personnes sur l'ensemble du territoire de la communauté de communes.

| Type de structure d'accueil                                             | Nombre    | Personne logement | Population saisonnière associée |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-----------|-------------------|---------------------------------|--|--|--|--|--|--|
| Alenya                                                                  |           |                   |                                 |  |  |  |  |  |  |
| Résidence secondaires                                                   | 168       | 4                 | 672                             |  |  |  |  |  |  |
| Nombre de places lit de résidence tourisme et<br>hébergements assimilés | 232       | 2                 | 464                             |  |  |  |  |  |  |
| Nombre de places lit Village vacances - Maison familliale               | 450       | 2                 | 900                             |  |  |  |  |  |  |
| Total                                                                   | 168       | -                 | 2 036                           |  |  |  |  |  |  |
|                                                                         | Corneilla | ı-del-Vercol      |                                 |  |  |  |  |  |  |
| Résidence secondaires                                                   | 42        | 4                 | 168                             |  |  |  |  |  |  |
| Total                                                                   | 42        | -                 | 168                             |  |  |  |  |  |  |
|                                                                         | Latour    | -Bas-Elne         |                                 |  |  |  |  |  |  |
| Résidence secondaires                                                   | 235       | 4                 | 940                             |  |  |  |  |  |  |
| Nombre de places lit de résidence tourisme et<br>hébergements assimilés | 474       | 2                 | 948                             |  |  |  |  |  |  |
| Total                                                                   | 235       | -                 | 1 888                           |  |  |  |  |  |  |
|                                                                         | Mon       | tescot            |                                 |  |  |  |  |  |  |
| Résidence secondaires                                                   | 42        | 4                 | 168                             |  |  |  |  |  |  |
| Total                                                                   | 42        | -                 | 168                             |  |  |  |  |  |  |
|                                                                         | Saint-    | Cyprien           |                                 |  |  |  |  |  |  |
| Résidence secondaires                                                   | 11 307    | 4                 | 45 228                          |  |  |  |  |  |  |
| Emplacement de camping                                                  | 724       | 6                 | 4 344                           |  |  |  |  |  |  |
| Chambres d'hotel                                                        | 288       | 2                 | 576                             |  |  |  |  |  |  |
| Nombre de places lit de résidence tourisme et hébergements assimilés    | 1074      | 2                 | 2 148                           |  |  |  |  |  |  |
| Nombre de places lit<br>Village vacances - Maison familliale            | 1631      | 2                 | 3 262                           |  |  |  |  |  |  |
| Nombre de places lit<br>Auberge de jeunesse - Centre sportif            | 210       | 2                 | 420                             |  |  |  |  |  |  |
| Total                                                                   | 13 393    | -                 | 55 978                          |  |  |  |  |  |  |
|                                                                         | TI        | heza              |                                 |  |  |  |  |  |  |
| Résidence secondaires                                                   | 35        | 4                 | 140                             |  |  |  |  |  |  |
| Total                                                                   | 35        | -                 | 140                             |  |  |  |  |  |  |
|                                                                         | TC        | OTAL              |                                 |  |  |  |  |  |  |
| Résidence secondaires                                                   | 11 829    | 4                 | 47 316                          |  |  |  |  |  |  |
| Emplacement de camping                                                  | 724       | 6                 | 4 344                           |  |  |  |  |  |  |
| Chambres d'hotel                                                        | 288       | 2                 | 576                             |  |  |  |  |  |  |
| Nombre de places lit de résidence tourisme et<br>hébergements assimilés | 1 780     | 2                 | 3 560                           |  |  |  |  |  |  |
| Nombre de places lit<br>Village vacances - Maison familliale            | 2 081     | 2                 | 4 162                           |  |  |  |  |  |  |
| Nombre de places lit<br>Auberge de jeunesse - Centre sportif            | 210       | 2                 | 420                             |  |  |  |  |  |  |
| Total                                                                   | 14 621    | -                 | 60 378                          |  |  |  |  |  |  |

# 3.2.4 SYNTHESE

Le tableau suivant synthétise l'ensemble des données relatives à la population de la communauté de communes en situation actuelle.

|                               | Alenva | Alenya Corneilla-del- |       | Montescot |         | Théza | TOTAL  |
|-------------------------------|--------|-----------------------|-------|-----------|---------|-------|--------|
|                               | 7      | Vercol                | Elne  |           | Cyprien |       |        |
| Population permanente (2021)  | 3 730  | 2 348                 | 3 021 | 1 720     | 10 989  | 2 183 | 23 991 |
| Population saisonnière (2020) | 2 036  | 168                   | 1 888 | 168       | 55 978  | 140   | 60 378 |
| Population maximale de pointe | 5 766  | 2 516                 | 4 909 | 1 888     | 66 967  | 2 323 | 84 369 |

La population maximale estivale est d'environ 84 400 habitants soit près de 4 fois la population permanente (24 000 habitants environ)

# 3.3 Donnees demographiques futures

#### 3.3.1 HORIZON DU SCHEMA DIRECTEUR D'ALIMENTATION EN EAU POTABLE

L'horizon de ce schéma directeur est fixé à 2050.

#### 3.3.2 HYPOTHESE RETENUE

La CC Sud Roussillon fait partie du périmètre du SCOT Plaine du Roussillon. De plus, une étude sur les perspectives d'urbanisation de la communauté de communes est menée par le cabinet COGEAM. Les populations mentionnées ci-après sont basées sur la construction à l'horizon 2035 de 3 380 logements sur l'ensemble de la communauté de communes pour un potentiel de croissance projetée de 2 545 habitants permanents.

A noter que le SCOT est en cours de rédaction et que ces données de population pourront être amenées à évoluer.

Le taux d'évolution engendré a été répercuté jusqu'à l'horizon du SDAEP soit 2050.

Le nombre de résidences secondaires et de structures d'accueil touristique a été considéré stable jusqu'en 2050.

#### 3.3.3 ALENYA

| Alenya                     |       |       |       |       |       |       |       |  |  |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                            | 2021  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |  |  |
| Population permanente      | 3 730 | 3 873 | 4 060 | 4 256 | 4 461 | 4 677 | 4 902 |  |  |
| Population saisonnière     | 2 036 | 2 036 | 2 036 | 2 036 | 2 036 | 2 036 | 2 036 |  |  |
| Population totale maximale | 5 766 | 5 909 | 6 096 | 6 292 | 6 497 | 6 713 | 6 938 |  |  |

#### 3.3.4 CORNEILLA DEL VERCOL

| Corneilla-del-Vercol       |       |       |       |       |       |       |       |  |  |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                            | 2021  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |  |  |
| Population permanente      | 2 348 | 2 452 | 2 588 | 2 732 | 2 884 | 3 044 | 3 213 |  |  |
| Population saisonnière     | 168   | 168   | 168   | 168   | 168   | 168   | 168   |  |  |
| Population totale maximale | 2 516 | 2 620 | 2 756 | 2 900 | 3 052 | 3 212 | 3 381 |  |  |

#### 3.3.5 LATOUR-BAS-ELNE

| Latour-Bas-⊟ne             |       |       |       |       |       |       |       |  |  |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                            | 2021  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |  |  |
| Population permanente      | 3 021 | 3 214 | 3 473 | 3 753 | 4 055 | 4 382 | 4 735 |  |  |
| Population saisonnière     | 1 888 | 1 888 | 1 888 | 1 888 | 1 888 | 1 888 | 1 888 |  |  |
| Population totale maximale | 4 909 | 5 102 | 5 361 | 5 641 | 5 943 | 6 270 | 6 623 |  |  |

#### 3.3.6 MONTESCOT

| Montescot                  |       |       |       |       |       |       |       |  |  |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                            | 2021  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |  |  |
| Population permanente      | 1 720 | 1 864 | 2 061 | 2 279 | 2 520 | 2 786 | 3 081 |  |  |
| Population saisonnière     | 168   | 168   | 168   | 168   | 168   | 168   | 168   |  |  |
| Population totale maximale | 1 888 | 2 032 | 2 229 | 2 447 | 2 688 | 2 954 | 3 249 |  |  |

#### 3.3.7 SAINT-CYPRIEN

| Saint-Cyprien              |        |        |        |        |        |        |        |  |  |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
|                            | 2021   | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |  |  |
| Population permanente      | 10 989 | 10 989 | 10 989 | 10 989 | 10 989 | 10 989 | 10 989 |  |  |
| Population saisonnière     | 55 978 | 55 978 | 55 978 | 55 978 | 55 978 | 55 978 | 55 978 |  |  |
| Population totale maximale | 66 967 | 66 967 | 66 967 | 66 967 | 66 967 | 66 967 | 66 967 |  |  |

#### 3.3.8 THEZA

| Théza                      |       |       |       |       |       |       |       |  |  |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                            | 2021  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |  |  |
| Population permanente      | 2 183 | 2 276 | 2 398 | 2 527 | 2 663 | 2 805 | 2 956 |  |  |
| Population saisonnière     | 140   | 140   | 140   | 140   | 140   | 140   | 140   |  |  |
| Population totale maximale | 2 323 | 2 416 | 2 538 | 2 667 | 2 803 | 2 945 | 3 096 |  |  |

#### 3.3.9 SYNTHESE DE LA POPULATION FUTURE

| Population totale maximale | 2021   | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|
| Alenya                     | 5 766  | 5 909  | 6 096  | 6 292  | 6 497  | 6 713  | 6 938  |
| Corneilla-del-Vercol       | 2 516  | 2 620  | 2 756  | 2 900  | 3 052  | 3 212  | 3 381  |
| Latour-Bas-Elne            | 4 909  | 5 102  | 5 361  | 5 641  | 5 943  | 6 270  | 6 623  |
| Montescot                  | 1 888  | 2 032  | 2 229  | 2 447  | 2 688  | 2 954  | 3 249  |
| Saint-Cyprien              | 66 967 | 66 967 | 66 967 | 66 967 | 66 967 | 66 967 | 66 967 |
| Théza                      | 2 323  | 2 416  | 2 538  | 2 667  | 2 803  | 2 945  | 3 096  |
| Total CC Sud Roussillon    | 84 369 | 85 047 | 85 948 | 86 914 | 87 950 | 89 062 | 90 255 |

#### 3.4 ACTIVITES ECONOMIQUES

#### 3.4.1 TOURISME

La principale activité du territoire est le tourisme. On recense en tout, sur l'ensemble du territoire de la communauté de communes, 4 hôtels (essentiellement sur la commune de Saint-Cyprien), 4 campings (essentiellement sur la commune de Saint-Cyprien), 7 résidences de tourisme et d'hébergements assimilés, 3 villages vacances et 1 auberge de jeunesse. Soit un total maximal d'environ 60 500 habitants saisonniers (Cf paragraphe 3.2.3 Population saisonnière).

#### En été la population peut être multipliée par 4.

Des activités touristiques sont également présentes sur les territoires communaux, notamment sur la commune de Saint-Cyprien ou l'on recense la présence d'un Aqualand, d'un jardin des plantes et de plages. Un parc de loisirs « Fantassia parc de la féerie » est présent sur la commune de Théza.

#### 3.4.2 AGRICULTURE

L'agriculture est bien présente sur le territoire. 47 établissements d'agriculture, sylviculture et pêche ont été recensés sur la commune de Saint-Cyprien par l'INSEE, 19 sur la commune de Corneilla-del-Vercol, 9 sur la commune de Latour-Bas-Elne, 11 sur la commune de Montescot, 19 sur la commune d'Alenya et 21 sur la commune de Théza.

### 3.4.3 COMMERCE, ARTISANAT ET SERVICES

Les communes disposent de commerces et de services de proximité.

La commune de Saint-Cyprien possède 1 000 établissements actifs de « commerce, transports, services divers » d'après le recensement INSEE. On note la présence de plusieurs supermarchés sur les communes. Les communes de Saint-Cyprien et de Latour-Bas-Elne ont chacune un grand fast-food sur leur territoire communal.

# 3.5 STRUCTURES D'ACCUEIL

#### 3.5.1 EQUIPEMENTS SCOLAIRES

La commune de Saint-Cyprien dispose de 6 écoles au total ; 3 écoles maternelles, 3 écoles primaires. Deux collèges et un lycée sont également présents sur la commune. Une crèche d'une capacité d'accueil de 40 enfants est également présente sur le territoire.

La commune de Latour-Bas-Elne compte sur son territoire la présence d'une école primaire et d'une maternelle.

La commune de Théza compte dispose de 3 établissements scolaires : une école élémentaire, une école maternelle et un lycée technologique. Cette commune dispose également d'une micro-crêche.

Les communes de Montescot, d'Alenya et de Corneilla-Del-Vercol disposent chacune de deux établissements : une école élémentaire et une école maternelle.

La commune d'Alenya dispose d'une crèche d'une capacité de 20 enfants. La commune de Corneilla-Del-Vercol dispose d'une garderie.

# 3.5.2 ACTIVITES SPORTIVES

La commune de Saint-Cyprien dispose d'un gymnase et de plusieurs stades. La commune de Latour-Bas-Elne dispose de deux stades. La commune d'Alenya dispose d'un stade, et d'une piscine.

#### 3.5.3 ACTIVITES CULTURELLES

La commune de Saint-Cyprien dispose d'un centre culturel, de 3 cinémas et d'un jardin des plantes. Le musée « Collections de Saint-Cyprien » est également présent sur le territoire communal.

Les communes de Latour-Bas-Elne et Théza ne semblent pas avoir de centre culturel sur leur territoire.

La commune d'Alenya dispose d'une bibliothèque sur son territoire tout comme la commune de Corneilla-Del-Vercol.

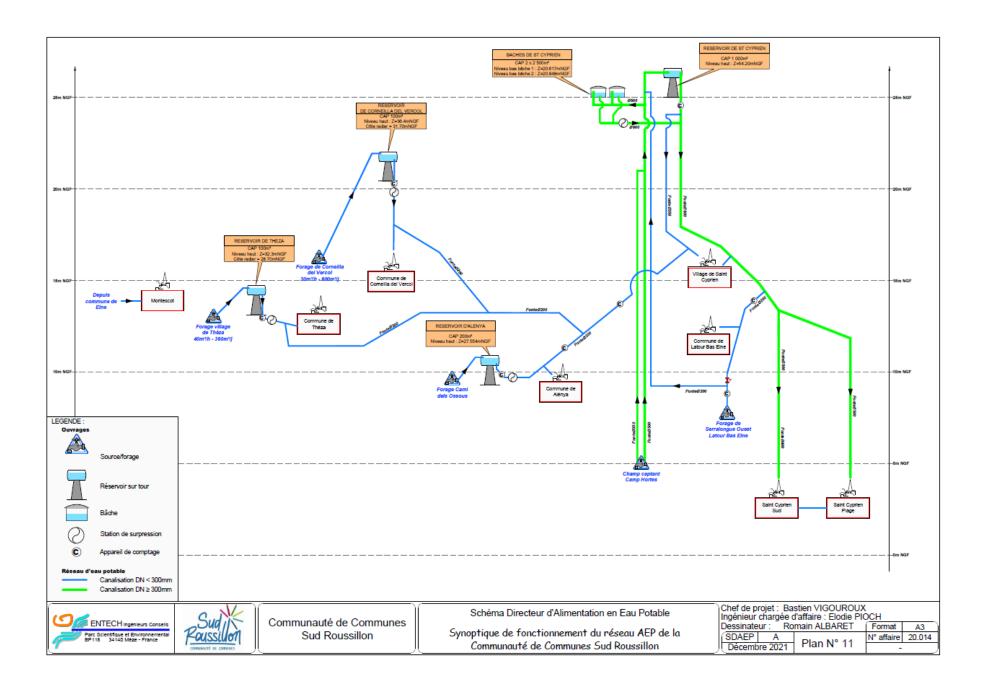
#### **3.5.4 AUTRES**

La commune de Saint-Cyprien dispose d'une aire pour les gens du voyage de 80 places.

Des parcs sont également présents sur les communes de Saint-Cyprien, Théza et Alyena.

# 4 PRESENTATION GENERALE DE L'ALIMENTATION EN EAU POTABLE DU TERRITOIRE

Comme précisé précédemment, la communauté de communes gère en régie l'alimentation en eau potable sur l'ensemble de son territoire de la production à l'abonné (mis à part sur l'UDI de Montescot où l'alimentation en eau potable est réalisée via des achats d'eau à la Communauté de Communes Albères Côte Vermeille Illiberis).


La Communauté de communes Sud Roussillon est organisée en 5 UDI.

- UDI Alénya
- UDI Corneilla-del-Vercol
- UDI Saint-Cyprien Latour-Bas-Elne
- UDI de Théza
- UDI de Montescot

L'UDI de Montescot est indépendante. Les UDI de d'Alénya, de Théza, de Corneilla-del-Velcol et de Saint-Cyprien - Latour-Bas-Elne sont, elles, interconnectées.

Le synoptique page suivante permet de localiser l'ensemble des ouvrages principaux du territoire.

L'ensemble des UDI fonctionne de façon similaire. Les eaux sont captées, renvoyées vers un ouvrage de stockage qui dessert gravitairement ou de manière surpressée le village.



# 5 ETAT DES EQUIPEMENTS AEP

# 5.1 MODE DE GESTION

L'ensemble des ouvrages AEP de la CCSR de la production à l'abonné sont gérés en régie intercommunale. La CCSR dispose également d'une prestation de service avec l'entreprise Grundfoss pour vérification annuelle de l'unité de traitement St Cyprien.

Des fiches descriptives concernant les ouvrages sont compilés dans le carnet des ouvrages joint au présent rapport. Une synthèse est présentée ci-après.

# 5.2 RESSOURCE ET EQUIPEMENTS DE PRELEVEMENTS - PRODUCTION

| Nom du captage                             | Forage d'Alénya - F2 Forage<br>Cami Del Ossous                                                                         | Forage F1 Village Corneilla<br>Del Vercol                                                                                        | Forage Village Théza                                                                                             | Forage de Latour Bas Eine<br>Serralongue Ouest Al Moly                                                               | Champ captant du Camp de la Hortes<br>Forages F3 bis, F2, F4 bis, F5, F6 et F7                                                                                                 |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photos de l'ouvrage                        |                                                                                                                        |                                                                                                                                  |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                |
| UDI desservie                              | Alimentation principale de la commune d'Alénya                                                                         | Alimentation principale de la commune de Corneilla                                                                               | Alimentation principale de la commune de Théza                                                                   | Ressource complémentaire de l'UDI Latour- St Cyprien                                                                 | Ressource principale de l'UDI Latour- St<br>Cyprien                                                                                                                            |
| Situation géographique                     | Même parcelle que le réservoir d'Alénya - Parcelle AK 56                                                               | Parcelle AH133 Corneilla                                                                                                         | Parcelle AH 307 Théza à proximité du réservoir                                                                   | Parcelle AD 18 Latour                                                                                                | Parcelles AN2 30, 175, 176, 202, 204 et 284 St Cyprien                                                                                                                         |
| Aquifère                                   | Nappe Pliocène                                                                                                         | Nappe Pliocène                                                                                                                   | Nappe Pliocène                                                                                                   | Nappe Pliocène                                                                                                       | Nappe Pliocène (F3 bis) et Quaternaire (F2, F4bis, F5, F6, et F7)                                                                                                              |
| Caractéristiques de l'ouvrage de captage   | Forage équipé d'une pompe<br>immergée de 50 m3/h. Ouvrage<br>protégé par un bâti verrouillé.<br>Profondeur non connue. | Forage équipé d'une pompe<br>immergée de 30 m3/h.<br>Captage enterré (sous le TN).<br>Profondeur : 74 m                          | Forage équipé d'une pompe<br>immergée de 30 m3/h.<br>Captage au sein d'un bâti<br>verrouillé. Profondeur : 201 m | Forage équipé d'une pompe immergée de 150 à 200 m3/h. Ouvrage protégé par un bâti verrouillé. Profondeur non connue. | 6 forages situés à proximité les uns des autres<br>sur le site d'une ancienne pépinière. Pompes<br>immergées entre 60 et 120 m3/h. Tous les<br>ouvrages sous bâti verrouillés. |
| Zone inondable                             | Zone aléa faible                                                                                                       | Ouvrage situé en dehors de la zone inondable                                                                                     | Zone aléa faible                                                                                                 | Zone B1 exposée à un aléa faible                                                                                     | Zone Rouge de précaution du PPRI de St<br>Cyprien                                                                                                                              |
| Zonages réglementaires                     | Aucun des ouvrages n'est situé d                                                                                       | ans des zones à réglementation sp                                                                                                | vécifique type Natura 2000, site insc                                                                            | crit                                                                                                                 |                                                                                                                                                                                |
| Situation réglementaire et administrative  | Arrêté préfectoral n°3387/2005<br>Débit autorisé de 60m3/h et<br>1 200m3/j                                             | Arrêté préfectoral du<br>26/11/2007<br>Débit autorisé de 30m3/h et<br>600m3/j                                                    | Arrêté préfectoral du<br>05/06/2002<br>Débit autorisé de 30m3/h et<br>360m3/j                                    | Arrêté préfectoral du 08/02/1998<br>Débit autorisé de 180m3/h et 3 420m3/j                                           | Arrêté préfectoral n°3385/2005 et 3386/2005 - Débit autorisés : - F3 bis : 100m3/h et 2 000m3/j - F2, F5, F6, F7 : 120m3/h et 2400m3/j chacun - F4 bis : 60m3/h et 1 200m3/j   |
|                                            |                                                                                                                        |                                                                                                                                  | Pliocène et de 2 900 000 m3 sur la<br>Bas Elne (Serralongue Ouest) et St                                         |                                                                                                                      |                                                                                                                                                                                |
| Gestion équilibrée                         | Aquifères Pliocène et Quaternaire le Quaternaire                                                                       | e en ZRE - Pas de nouveau prélève                                                                                                | ement possible sur le Pliocène. Rév                                                                              | ision en cours des autorisations de                                                                                  | prélèvement. Nouveau prélèvement possible sur                                                                                                                                  |
| Etat de l'ouvrage et<br>travaux à réaliser | Ouvrage en bon état. Tête de forage réhaussée récemment. Pas de travaux à réaliser                                     | Ouvrage en bon état. Travaux<br>d'aménagement et de<br>protection du captage réalisés<br>récemment. Pas de travaux à<br>réaliser | Captage relativement ancien.<br>Event à rehausser à 1.60m au-<br>dessus du TN                                    | Ouvrage en bon état<br>Pas de travaux à réaliser                                                                     | Ouvrages en bon état<br>Travaux d'aménagement et de protection des<br>captages réalisés il y a 15 ans.<br>Pas de travaux à réaliser                                            |

# 5.3 OUVRAGES DE STOCKAGE

| Nom du réservoir                           | Réservoir d'Alénya                                                                                                                                                                                                                                                                             | Réservoir de Corneilla                                                                                                         | Réservoir de Théza                                                                                                             | Réservoir de St Cyprien                                                                                                                                                           | Bâche de St Cyprien                                                                                                                         |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Photos de l'ouvrage                        |                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                             |
| UDI desservie                              | UDI Alénya                                                                                                                                                                                                                                                                                     | UDI de Corneilla                                                                                                               | UDI de Théza                                                                                                                   | UDI Latour- St Cyprien (en hiver le réservoir sur tour)                                                                                                                           | alimentation uniquement depuis                                                                                                              |
| Situation géographique                     | Même parcelle que le captage<br>d'Alénya - Parcelle AK 56                                                                                                                                                                                                                                      | Parcelle AH 72 Corneilla                                                                                                       | Parcelle AH 199 Théza                                                                                                          | Parcelle AO 1413 St Cyprien                                                                                                                                                       | Parcelle AO 1413 St Cyprien                                                                                                                 |
| Туре                                       | Réservoir sur tour - Monocuve                                                                                                                                                                                                                                                                  | Réservoir sur tour - Monocuve                                                                                                  | Réservoir sur tour - Monocuve                                                                                                  | Réservoir sur tour - Monocuve                                                                                                                                                     | Bâche semi-enterrée – Deux cuves                                                                                                            |
| Volume                                     | 200 m3                                                                                                                                                                                                                                                                                         | 200 m3                                                                                                                         | 100 m3                                                                                                                         | 1 000 m3                                                                                                                                                                          | 2 500 m3 chacune                                                                                                                            |
| Télégestion                                | Oui – Suivi niveau, débit et pression départ                                                                                                                                                                                                                                                   | Oui – Suivi niveau, débit et pression départ                                                                                   | Oui – Suivi niveau, débit et pression départ                                                                                   | Oui – Suivi niveau du réservoir distribution                                                                                                                                      | et des bâches. Pas de compteur                                                                                                              |
| Zone inondable                             | Zone aléa faible                                                                                                                                                                                                                                                                               | Ouvrage situé en dehors de la zone inondable                                                                                   | Zone aléa faible                                                                                                               | Ouvrage situé en dehors de la zone inondable                                                                                                                                      | Ouvrage situé en dehors de la zone inondable                                                                                                |
| Zonages réglementaires                     | Aucun des ouvrages n'est situé o                                                                                                                                                                                                                                                               | dans des zones à réglementation s                                                                                              | pécifique type Natura 2000, site in                                                                                            | scrit                                                                                                                                                                             |                                                                                                                                             |
| Etat de l'ouvrage et travaux<br>à réaliser | Etat satisfaisant - Quelques épaufrures béton en sous-face du dôme + ferrailles apparentes – Echelle d'accès rouillée  Travaux à réaliser : - Remplacement échelle d'accès et capot fonte accès toiture - Reprise étanchéité toiture et reprise béton - Vanne Bayard de régulation à contrôler | Etat satisfaisant – Echelle d'accès rouillée  Travaux à réaliser : - Remplacement échelle d'accès et capot fonte accès toiture | Bon état - Chambre des<br>vannes, étanchéité de la cuve<br>et de la toiture refaite<br>récemment<br>Travaux à réaliser : néant | Etat satisfaisant - Quelques traces de rouilles sur conduite - Echelle d'accès rouillée  Travaux à réaliser : - Remplacement échelle d'accès - Traitement de la conduite corrodée | Etat satisfaisant - Quelques traces de rouilles sur conduite départ distribution  Travaux à réaliser : - Traitement de la conduite corrodée |

# 5.4 OUVRAGES DE SURPRESSIONS

| Nom                                      | Surpression d'Alénya                                                                  | Surpression de Corneilla                                            | Surpression de Théza                                                                                                                       | Surpression de St Cyprien                                                                                             |
|------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Photos de l'ouvrage                      |                                                                                       |                                                                     |                                                                                                                                            |                                                                                                                       |
| UDI desservie                            | UDI Alénya                                                                            | UDI de Corneilla                                                    | UDI de Théza                                                                                                                               | UDI Latour- St Cyprien                                                                                                |
| Situation géographique                   | Au sein de la chambre des vannes du réservoir sur tour d'Alénya                       | Au sein de la chambre des vannes du réservoir sur tour de Corneilla | Au sein de la chambre des vannes du réservoir sur tour de Théza                                                                            | Au sein de la chambre des vannes du réservoir de la bâche de St Cyprien                                               |
| Туре                                     | Surpression                                                                           | Surpression                                                         | Surpression                                                                                                                                | Surpression                                                                                                           |
| Caractéristiques<br>nominales des pompes | 3 pompes verticales KSB de 35 à 40 m3/h avec les 3 en fonctionnement – HMT non connue | 3 pompes horizontales de 20 m3/h<br>chacune – HMT non connue        | 3 pompes verticales de 24 m3/h<br>chacune – HMT non connue                                                                                 | 6 pompes verticales en fourreau : - 2 pompes de 150 m3/h - 2 pompes de 250 m3/h - 2 pompes de 500 m3/h HMT non connue |
| Fonctionnement                           | 2 pompes sur variateur et 1 sur<br>démarreur - Asservissement pression<br>(3,3 bars)  | Pompes sur variateur -<br>Asservissement pression                   | Asservissement pression qui<br>déclenche le fonctionnement des 2<br>premières pompes - Dernière pompe<br>sur un seuil de pression plus bas | Pompes sur variateur-<br>Asservissement pression (3 à 3.5<br>bars)                                                    |
| Télégestion                              | Oui                                                                                   | Oui                                                                 | Oui                                                                                                                                        | Oui                                                                                                                   |
| Zone inondable                           | Zone aléa faible                                                                      | Ouvrage situé en dehors de la zone inondable                        | Zone aléa faible                                                                                                                           | Ouvrage situé en dehors de la zone inondable                                                                          |
| Zonages réglementaires                   | Aucun des ouvrages n'est situé dans de                                                | es zones à réglementation spécifique type                           | Natura 2000, site inscrit                                                                                                                  |                                                                                                                       |
| Etat de l'ouvrage et travaux à réaliser  | Bon état – Pas de travaux à réaliser                                                  | Bon état – Pas de travaux à réaliser                                | Bon état – Pas de travaux à réaliser                                                                                                       | Etat satisfaisant – Pas de travaux à réaliser                                                                         |

## 5.5 OUVRAGES DE TRAITEMENT

Les traitements effectués au niveau de chacune des UDI consistent en :

- UDI Alénya : Traitement par injection d'hypochlorite de sodium (12,5% de chlore actif) sur l'adduction du réservoir
- UDI Corneilla-del-Vercol : Traitement par injection d'hypochlorite de sodium (12,5% de chlore actif) sur l'adduction du réservoir
- UDI Saint-Cyprien Latour-Bas-Elne : Traitement sur l'adduction du réservoir par ajout d'hypochlorite de sodium par électrolyse de sel
- UDI de Théza : Traitement par injection d'hypochlorite de sodium (12,5% de chlore actif) sur l'adduction du réservoir
- UDI de Montescot : Achat d'eau déjà traitée

## 5.6 RESEAUX

## 5.6.1 RESEAUX D'ADDUCTION

Les données ci-dessous sont issues du SIG (Système d'Information Géographique) des réseaux fournis par la CC Sud Roussillon.

Les réseaux d'adduction en eau potable de la communauté de communes représentent un linéaire d'environ 3,7 km.

Les tableaux suivants présentent le linéaire des réseaux par commune en fonction des matériaux, des diamètres et de l'âge des canalisations :

|                 |    |       | <b>Total Adduction</b> |         |       |
|-----------------|----|-------|------------------------|---------|-------|
|                 | AC | FONTE | PVC                    | Inconnu |       |
| Alenya          |    |       |                        | 17      | 17    |
| Inconnu         |    |       |                        | 17      | 17    |
| Corneilla       |    |       | 190                    |         | 190   |
| 125             |    |       | 190                    |         | 190   |
| Latour Bas Elne |    | 1 088 |                        |         | 1 088 |
| 200             |    | 1 088 |                        |         | 1 088 |
| Saint Cyprien   |    | 1 702 | 1                      | 120     | 1 823 |
| Inconnu         |    |       |                        | 120     | 120   |
| 150             |    | 41    |                        |         | 41    |
| 200             |    | 180   | 1                      |         | 181   |
| 350             |    | 778   |                        |         | 778   |
| 500             |    | 704   |                        |         | 704   |
| Theza           | 23 |       |                        |         | 23    |
| 80              | 23 |       |                        |         | 23    |
| Total général   | 23 | 2 790 | 191                    | 137     | 3 140 |

#### Ainsi:

- La fonte est le matériau prédominant des réseaux d'adduction de la CC (90% du réseau),
- Les diamètres les plus représentés sont supérieurs à 200 mm.

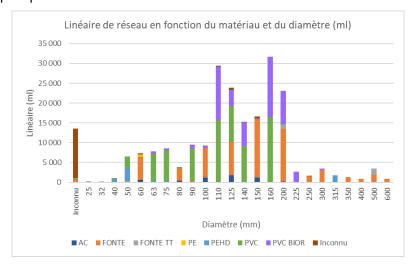
|                 | Adduction |
|-----------------|-----------|
|                 | TRC       |
| Alenya          | 17        |
| Inconnu         | 17        |
| Corneilla       | 190       |
| 2000-2009       | 190       |
| Latour Bas Elne | 1 088     |
| Inconnu         | 1 088     |
| Saint Cyprien   | 1 823     |
| Inconnu         | 123       |
| 1960-1969       | 423       |
| 2010-2014       | 1 277     |
| Theza           | 23        |
| 1990-1999       | 23        |
| Total général   | 3 140     |

Les dates de pose des réseaux d'adduction sont connues à 52%.

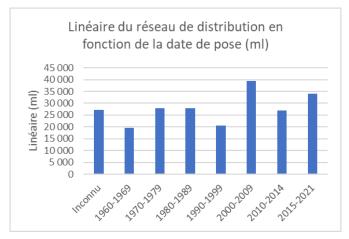
#### 5.6.2 RESEAUX DE DISTRIBUTION

Les données ci-dessous sont issues du SIG (Système d'Information Géographique) des réseaux fournis par la CC Sud Roussillon.

Les réseaux de distribution en eau potable de la communauté de communes représentent un linéaire d'environ 223 km.


Les tableaux suivants présentent le linéaire des réseaux par commune en fonction des matériaux, des diamètres et de l'âge des canalisations :

|                      |       |                   |          | Die | tribution                                        |                |              |          | Total Distribution |
|----------------------|-------|-------------------|----------|-----|--------------------------------------------------|----------------|--------------|----------|--------------------|
|                      | AC    | FONTE             | FONTE TT | PE  | PEHD                                             | PVC            | PVC BIOR     | Inconnu  | Total Bistribution |
| Alenya               | 637   | 5 618             | 0        | 13  | 133                                              | 8 164          | 11 298       | 644      | 26 507             |
| Inconnu              |       |                   |          |     |                                                  |                |              | 490      | 490                |
| 32                   |       |                   |          | 6   | 10                                               |                |              |          | 6                  |
| 50                   |       | 444               |          | 7   | 40                                               |                |              | 00       | 47                 |
| 60                   |       | 114               |          |     | 93                                               | 304            |              | 88<br>22 | 202<br>419         |
| 75                   |       |                   |          |     | 95                                               | 1 089          |              | 22       | 1 089              |
| 80                   | 27    | 208               |          |     |                                                  | 1 000          |              |          | 236                |
| 90                   |       |                   |          |     |                                                  | 1 413          | 56           |          | 1 469              |
| 100                  | 206   | 558               |          |     |                                                  |                | 313          |          | 1 077              |
| 110                  |       |                   |          |     |                                                  | 1 847          | 2 964        | 12       | 4 823              |
| 125                  | 63    | 1 085             |          |     |                                                  | 1 180          | 783          | 32       | 3 143              |
| 140                  |       |                   |          |     |                                                  | 727            | 1 556        |          | 2 283              |
| 150                  | 143   | 601               |          |     |                                                  | 4.004          | 197          |          | 941                |
| 160                  | 100   | 0.050             |          |     |                                                  | 1 604          | 2 415        |          | 4 019              |
| 200<br>225           | 198   | 3 052             |          |     |                                                  |                | 2 700<br>315 |          | 5 949<br>315       |
| Corneilla            | 229   | 3 232             | 0        | 0   | 107                                              | 7 413          | 1 223        | 2 867    | 15 071             |
| Inconnu              | 223   | 0 202             |          | 0   | 101                                              | , 413          | 1 220        | 2 206    | 2 206              |
| 50                   | 1     |                   |          |     | 44                                               | 85             |              |          | 129                |
| 60                   |       | 101               |          |     |                                                  | 111            |              |          | 212                |
| 63                   |       |                   |          |     |                                                  | 175            |              |          | 175                |
| 75                   |       |                   |          |     | 63                                               | 584            |              |          | 647                |
| 80                   | 229   | 592               |          |     |                                                  | 149            |              |          | 970                |
| 90                   |       |                   |          |     |                                                  | 1 102          | 449          |          | 1 552              |
| 100                  |       | 154               |          |     |                                                  |                |              | 3        | 157                |
| 110                  |       | 4 444             |          |     |                                                  | 134            | 16           | 000      | 150                |
| 125<br>140           |       | 1 441             |          |     |                                                  | 3 188<br>1 883 | 419<br>339   | 290      | 5 339<br>2 222     |
| 150                  |       | 205               |          |     | +                                                | 1 883          | 339          | 368      | 573                |
| 200                  |       | 739               |          |     |                                                  |                |              | 300      | 739                |
| Latour Bas Elne      | 1 100 | 5 056             | 0        | 26  | 87                                               | 3 462          | 9 646        | 736      | 20 113             |
| Inconnu              |       |                   |          |     |                                                  |                |              | 476      | 476                |
| 25                   |       |                   |          | 2   |                                                  |                |              |          | 2                  |
| 32                   |       |                   |          | 3   |                                                  |                |              |          | 3                  |
| 40                   |       |                   |          | 5   | 75                                               |                |              |          | 81                 |
| 50                   |       |                   |          |     |                                                  | 403            |              |          | 403                |
| 60                   | 293   | 263               |          |     |                                                  | 110            |              |          | 556                |
| 63                   | _     |                   |          | 3   | 11                                               | 112            | 50           |          | 126<br>222         |
| 75<br>80             | +     | 119               |          |     |                                                  | 164            | 58           |          | 119                |
| 90                   |       | 110               |          |     |                                                  | 544            | 280          |          | 824                |
| 100                  |       | 778               |          |     |                                                  | 0              | 7            |          | 785                |
| 110                  |       |                   |          | 13  |                                                  | 323            | 1 116        | 47       | 1 499              |
| 125                  | 471   | 1 981             |          |     |                                                  | 168            | 765          |          | 3 385              |
| 140                  |       |                   |          |     |                                                  | 651            | 2 306        | 131      | 3 089              |
| 150                  | 337   | 1 233             |          |     |                                                  |                |              | 81       | 1 651              |
| 160                  | -     | <b></b>           | ļ        |     | <b></b>                                          | 1 096          | 2 850        |          | 3 946              |
| 200                  | 1     | 682               | 1        |     | <del>                                     </del> | 1              | 2 220        |          | 2 902              |
| 225                  | 99    | 3 358             | 1 102    | 0   | 1 400                                            | 6 434          | 45<br>1 265  | 640      | 45<br>14 298       |
| Montescot<br>Inconnu | 99    | 601               | 1 102    | U   | 152                                              | 0 434          | 1 200        | 640      | 1 393              |
| 32                   | 1     | 501               |          |     | 11                                               | 1              | †            | 340      | 11                 |
| 40                   | 1     | İ                 |          |     | 533                                              |                |              |          | 533                |
| 50                   |       |                   |          |     | 704                                              |                |              |          | 704                |
| 63                   |       |                   |          |     |                                                  | 643            |              |          | 643                |
| 75                   |       |                   |          |     |                                                  | 619            |              | •        | 619                |
| 90                   |       |                   |          |     | <b></b>                                          | 652            | ļ <u> </u>   |          | 652                |
| 100                  | 31    | ļ                 | ļ        |     | <b></b>                                          |                | <b> </b>     |          | 31                 |
| 110                  |       | 1                 |          |     | +                                                | 264            | 1            |          | 264                |
| 125                  | 68    | 1                 |          |     | +                                                | 1 435          | 64.4         |          | 1 503              |
| 140                  | +     | 1 445             | -        |     |                                                  | 1 865<br>52    | 614          |          | 2 479<br>1 497     |
| 150                  | 1     | I <del>44</del> 0 | 1        |     | +                                                |                | 1            |          | 903                |
| 150                  |       |                   |          |     |                                                  |                |              |          |                    |
| 160                  |       |                   | 1 102    |     |                                                  | 903            | 651          |          |                    |
|                      |       | 911               | 1 102    |     |                                                  | 903            | 651          |          | 1 754<br>911       |


|               |       |        |          | Dist | ribution |        |          |         | Total Distribution |
|---------------|-------|--------|----------|------|----------|--------|----------|---------|--------------------|
|               | AC    | FONTE  | FONTE TT | PE   | PEHD     | PVC    | PVC BIOR | Inconnu |                    |
| Saint Cyprien | 3 245 | 36 554 | 1 596    | 361  | 4 953    | 50 628 | 27 389   | 8 869   | 133 595            |
| Inconnu       |       |        |          |      |          | 360    |          | 7 978   | 8 338              |
| 25            |       |        |          | 8    |          |        |          | 15      | 23                 |
| 32            |       |        |          | 65   | 20       | 104    |          |         | 189                |
| 40            |       |        |          | 3    | 118      | 327    |          |         | 448                |
| 50            |       |        |          | 171  | 2 703    | 2 295  |          |         | 5 169              |
| 60            | 382   | 2 511  |          |      |          |        |          | 150     | 3 043              |
| 63            |       |        |          | 24   | 97       | 5 654  |          | 113     | 5 889              |
| 75            |       |        |          | 71   | 97       | 5 227  |          |         | 5 395              |
| 80            | 123   | 1 694  |          |      |          |        |          | 2       | 1 819              |
| 90            |       | 256    |          | 11   | 8        | 3 891  | 157      | 137     | 4 460              |
| 100           | 978   | 5 960  |          |      |          | 6      | 74       | 38      | 7 055              |
| 110           |       |        |          | 9    |          | 13 102 | 9 002    | 130     | 22 243             |
| 125           | 1 104 | 1 929  |          |      |          | 2 698  | 2 059    | 217     | 8 007              |
| 140           |       |        |          |      | 170      | 3 848  | 1 181    |         | 5 198              |
| 150           | 658   | 8 335  |          |      |          |        | 66       |         | 9 058              |
| 160           |       |        |          |      |          | 12 864 | 9 320    |         | 22 183             |
| 200           |       | 7 611  |          |      |          | 252    | 2 762    |         | 10 625             |
| 225           |       |        |          |      |          |        | 2 358    |         | 2 358              |
| 250           |       | 569    |          |      |          |        |          | 88      | 657                |
| 300           |       | 2 689  |          |      |          |        | 412      |         | 3 101              |
| 315           |       |        |          |      | 1 741    |        |          |         | 1 741              |
| 350           |       | 1 342  |          |      |          |        |          |         | 1 342              |
| 400           |       | 889    |          |      |          |        |          |         | 889                |
| 500           |       | 1 914  | 1 596    |      |          |        |          |         | 3 510              |
| 600           |       | 857    |          |      |          |        |          |         | 857                |
| Theza         | 0     | 9 418  | 0        | 517  | 0        | 1 400  | 1 897    | 671     | 13 903             |
| Inconnu       |       |        |          |      |          |        |          | 671     | 671                |
| 50            |       |        |          |      |          | 111    |          |         | 111                |
| 60            |       | 2 799  |          | 517  |          | 19     |          |         | 3 335              |
| 63            |       |        |          |      |          | 49     | 448      |         | 497                |
| 75            |       |        |          |      |          | 240    | 340      |         | 579                |
| 80            |       | 505    |          |      |          |        |          |         | 505                |
| 90            |       |        |          |      |          | 545    |          |         | 545                |
| 100           |       | 26     |          |      |          |        | 17       |         | 43                 |
| 110           |       |        |          |      |          | 15     | 444      |         | 460                |
| 125           |       | 2 014  |          |      |          | 421    | ĺ        |         | 2 435              |
| 150           |       | 2 921  |          |      |          |        |          |         | 2 921              |
| 160           |       |        |          |      |          |        | 649      |         | 649                |
| 200           |       | 1 153  |          |      |          |        |          |         | 1 153              |
| Total général | 5 311 | 63 236 | 2 698    | 917  | 6 681    | 77 500 | 52 718   | 14 427  | 223 488            |

|               |        | Distribution |                 |           |               |        |               |
|---------------|--------|--------------|-----------------|-----------|---------------|--------|---------------|
|               | Alenya | Corneilla    | Latour Bas Elne | Montescot | Saint Cyprien | Theza  | Total général |
| Inconnu       | 635    | 1 117        | 1 274           | 1 889     | 20 561        | 1 564  | 27 039        |
| 1960-1969     | 103    | 496          | 175             | 68        | 16 647        | 2 073  | 19 562        |
| 1970-1979     | 1 281  | 1 601        | 429             | 0         | 23 548        | 1 051  | 27 910        |
| 1980-1989     | 658    | 1 063        | 1 592           | 1 895     | 21 558        | 1 164  | 27 931        |
| 1990-1999     | 5 843  | 2 333        | 3 692           | 901       | 6 526         | 1 220  | 20 514        |
| 2000-2009     | 7 640  | 3 299        | 5 485           | 3 195     | 19 892        | 0      | 39 511        |
| 2010-2014     | 7 301  | 76           | 6 252           | 2 688     | 10 372        | 266    | 26 956        |
| 2015-2021     | 3 046  | 5 087        | 1 215           | 3 662     | 14 491        | 6 566  | 34 065        |
| Total général | 26 507 | 15 071       | 20 113          | 14 298    | 133 595       | 13 903 | 223 488       |

Le graphe ci-après présente le linéaire de réseau en fonction des matériaux et des diamètres.



Les dates de pose du réseau de distribution de la communauté de communes sont connues à 88%. Le graphe ci-après présente le linéaire de réseau en fonction des dates de pose.



Les réseaux posés avant 1970 représentent moins d'1% du linéaire dont la date de pose est connue.

## 5.6.3 OUVRAGES DE REGULATION

Aucun ouvrage de régulation n'est répertorié au sein du SIG sur les réseaux de la communauté de communes.

## 5.6.4 RISQUE DE RELARGAGE DE CVM

L'instruction N°DGS/EA4/2012/366 du 18 octobre 2012 précise que les tronçons de canalisations susceptibles de contenir du Chlorure de Vinyle Monomère résiduel qui risque de migrer vers l'EDCH, sont les canalisations en PVC antérieures à1980 et présentant un temps de séjour de l'eau supérieur à 2 jours.

Une cartographie permettant la localisation des tronçons de canalisation en PVC antérieur à 1980 sur la CCSR est annexée au dossier de plans.

Le plan de renouvellement établi à l'issue du SDAEP prendra en considération le risque de relargage de CVM afin de prioriser la réhabilitation des tronçons concernés.

## 5.7 DEFENSE INCENDIE

#### 5.7.1 RAPPEL REGLEMENTAIRE

La circulaire de 1951 (n°51.46.S) du 10 décembre 1951 complétée par l'arrêté ministériel du 1er février 1978, précise notamment les deux principes généraux de la lutte contre l'incendie :

- L'engin de base de lutte contre le feu est la motopompe de 60 m3/h,
- La durée approximative d'extinction d'un sinistre moyen peut être évaluée à deux heures.

Comme corollaire immédiat, il en résulte que les sapeurs-pompiers doivent trouver sur place, en tout temps, une quantité d'eau égale à 120 m³ en 2 heures. La nécessité de poursuivre l'extinction du feu sans interruption exige que cette quantité puisse être utilisée sans déplacement des engins.

De plus, la couverture géographique assurée par les poteaux incendie doit satisfaire aux contraintes suivantes :

- Distance maximale de 200 m (par voies carrossables) entre le dernier poteau incendie et l'entrée du bâtiment le plus éloigné à protéger,
- Distance maximale de 200 m (par voies carrossables) entre chaque poteau incendie,
- Densité minimum d'implantation entre les Poteaux Incendie (P.I.): 1 par carré de 4 ha.

La circulaire du ministère de l'Agriculture du 9 août 1967 (ER/4037) précise que dans le cas de petites communes rurales, il est déconseillé de sur dimensionner le réseau pour qu'il puisse assurer le débit de protection incendie pendant deux heures car cela entraîne des temps de séjour trop longs préjudiciables à la qualité de l'eau.

Lorsque le lieu à protéger n'est pas desservi par le réseau, ou lorsque le réseau ne permet pas d'assurer la défense, mise en place de réserves de 120 m³ minimum utilisables en tout temps et implantées à 400 m maximum du lieu à défendre. Si plusieurs points d'eau sont nécessaires, la distance linéaire entre deux points d'eau doit être de 300 m maximum.

Les ressources en eau privées ne peuvent pas être prises en compte : la lutte contre l'incendie relève du service public obligatoire. Dans tous les cas, les contrats avec des sociétés de distribution d'eau brute prévoient des possibilités d'interruption de la fourniture de l'eau incompatible avec une permanence de protection.

Les canalisations d'alimentation doivent être d'un diamètre minimum de 100 mm.

#### Il est à noter que des textes sont parus au niveau national depuis 2015.

Le décret n°02015-235 du 27 février 2015, notamment, définit :

- la notion de Points d'Eau Incendie (PEI), constitués d'ouvrages publics ou privés (article R 2225-1);
- le contenu du référentiel national (article R. 2225-2);
- le contenu et la méthode d'adoption du règlement départemental de D.E.C.I.(article R. 2225-3)
- la conception de la D.E.C.I. par le maire ou le président de l'E.P.C.I. à fiscalité propre (article R. 2225-4);
- le contenu et la méthode d'adoption du schéma communal ou intercommunal de D.E.C.I;
- les objets du service public de D.E.C.I. pris en charge par la commune ou l'E.P.C.I. et les possibilités de prise en charge de tout ou partie de ses objets par des tiers (article R. 2225-7);
- les modalités d'utilisation des réseaux d'adduction d'eau potable au profit de la D.E.C.I. (article R. 2225-8);
- les notions de contrôle des points d'eau incendie (évaluation de leurs capacités) sous l'autorité de la police spéciale de la D.E.C.I. (article R. 2225-9) et de reconnaissance opérationnelle de ceux-ci par les S.D.I.S. (article R. 2225-10).

L'arrêté n° NOR INTE 1522200A du 15 décembre 2015, quant à lui, définit une méthodologie et des principes généraux relatifs à l'aménagement, à l'entretien et à la vérification des PEI servant à

l'alimentation des moyens de lutte contre l'incendie. Il aborde l'ensemble des questions relatives à la DECI et présente des solutions possibles. Il n'est pas directement applicable sur le terrain. Le référentiel constitue une « boite à outils » pour établir le RDDECI qui fixe les règles de DECI adaptées aux risques et contingences du territoire.

Le référentiel porte sur les principes de la défense extérieure contre l'incendie pour la protection générale des bâtiments.

Progressivement, les textes nationaux ont été adaptés au niveau départemental.

#### Ainsi, le Règlement Départemental de Défense Extérieure Contre l'Incendie (RDDECI) des Pyrénées Orientales a été établi en 2018.

Défini à l'article R.2225-3 du C.G.C.T. le règlement départemental est la clef de voûte de la nouvelle réglementation de la D.E.C.I. C'est à ce niveau que sont élaborées les « grilles de couverture » des risques d'incendie respectant le principe d'objectif de sécurité à atteindre, notamment dans le choix des points d'eau incendie (P.E.I.) possibles.

Il est réalisé à partir d'une large et obligatoire concertation avec les élus et les autres partenaires de la D.E.C.I. notamment les services publics de l'eau. Il est rédigé par le S.D.I.S. Il est arrêté par le préfet de département.

Il permet de fixer des solutions adaptées aux risques à défendre, en prenant en compte les moyens et les techniques du S.D.I.S.66 ainsi que leurs évolutions.

Il est ainsi cohérent avec le schéma départemental d'analyse et de couverture des risques (S.D.A.C.R.). Il est complémentaire du règlement opérationnel du S.D.I.S.

Le Règlement Départemental de Défense Extérieure contre l'Incendie (RDDECI) devra ensuite être adaptés au niveau communal (schéma directeur communal de DI).

Chaque commune devra alors établir un schéma précisant les quartiers plus ou moins à risque et les débits associés pour assurer la défense incendie.

## 5.7.2 DENSITE DES POTEAUX INCENDIE

La densité des poteaux incendie a été interprétée en fonction des plans réseaux.

Une analyse fine de la densité des poteaux incendie a été effectuée à partir des plans réseaux et du cadastre de la commune. Cette analyse a permis d'identifier les secteurs non couverts par la défense incendie selon les critères suivants :

- Distance maximale de 200 m (par voies carrossables) entre le dernier poteau incendie et l'entrée du bâtiment le plus éloigné à protéger en fonction de l'habitat,
- Distance maximale de 400 m (par voies carrossables) entre chaque poteau incendie,

Cette analyse a montré que globalement, les centres-villes des communes disposent de suffisamment d'hydrants pour assurer la défense incendie. Cependant, certaines zones situées en périphérie ne sont pas couvertes par la défense incendie.

Les plans de la couverture incendie sont annexés au présent rapport.

#### 5.7.3 CAPACITE DU RESEAU A ALIMENTER LES POTEAUX INCENDIE

#### 5.7.3.1 VOLUMES RESERVES A LA DEFENSE INCENDIE DISPONIBLES

Aucun des réservoirs de la CC Sud Roussillon ne dispose de volumes bloqués pour la défense incendie. De plus, les autonomies des ouvrages sont insuffisantes pour assurer la défense incendie du territoire en tout temps.

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 46 / 118 Rapport d'étude Version c

## 5.7.3.2 CAPACITES DES CONDUITES ALIMENTANT LES POTEAUX INCENDIE

La capacité d'une conduite alimentant un poteau incendie est déterminée par le fonctionnement du poteau incendie (débit/pression) éprouvé le jour de l'essai. Elle résulte d'une analyse ponctuelle dans les conditions de débit et de pression du moment.

Le dernier contrôle du réseau incendie réalisé par PMM est en date de 2019, les résultats sont les suivants :

|                          | Nombre<br>d'hydrants<br>SIG | Nombre<br>d'hydrants fichier<br>SDIS | Nombre<br>d'hydrants<br>conformes | Nombre<br>d'hydrants non<br>testés en<br>domaine privé | Pesée hydrants                                        |
|--------------------------|-----------------------------|--------------------------------------|-----------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| Saint Cyprien            | 293                         | 344                                  | 263                               | 81                                                     | > 65 m3/h à 1 bar<br>pour tous les<br>hydrants testés |
| Alenya                   | 65                          | 68                                   | 62                                | 6                                                      | > 65 m3/h à 1 bar<br>pour tous les<br>hydrants testés |
| Latour-Bas-Eine          | 58                          | 56                                   | 53                                | 3                                                      | > 65 m3/h à 1 bar<br>pour tous les<br>hydrants testés |
| Théza                    | 23                          |                                      |                                   |                                                        |                                                       |
| Montescot                | 22                          |                                      |                                   |                                                        |                                                       |
| Corneilla-del-<br>Vercol | 32                          |                                      |                                   |                                                        |                                                       |

# 6 ANALYSE DE LA QUALITE DE L'EAU

## 6.1 QUALITE DE L'EAU BRUTE

Les données fournies par l'ARS sur la qualité des eaux brutes concernent les communes de : Théza, Alénya, Latour Bas Elne et Saint Cyprien. Aucune donnée de qualité ne nous a été transmise par l'ARS concernant les communes de Corneilla-del-Vercol et Montescot. Les données traitées concernent les 5 dernières années.

A noter que l'eau étant simplement chlorée sur chaque UDI, les paramètres d'eau brute ont été comparés aux limites et références de qualité des eaux distribuées (hors chlore).

Les tableaux suivants synthétisent ces données par commune et captage :

## 6.2 ALENYA - F2 CAMI DELS OSSOUS

| Paramètres                     | Synthèse des ré<br>l'eau br                          | sultats sur la qualité de<br>ute (suivi ARS)                       | Limite et/ou référence de qualité au<br>niveau du point de mise en<br>distribution                                                                                               |
|--------------------------------|------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                      |                                                                    | Pas de norme concernant les bactéries revivifiantes                                                                                                                              |
| Paramètres<br>bactériologiques | E.Coli : Absend                                      | ormes : Pas d'analyse<br>ce (3 analyses)<br>: Absence (3 analyses) | Limite de qualité à 0/100ml pour les eschérichia coli, les entérocoques et les cryptosporidium                                                                                   |
|                                |                                                      |                                                                    | Référence de qualité à 0/100ml pour les coliformes et les bactéries sulfito-réductrices                                                                                          |
| рН                             | • 7.7                                                |                                                                    | Pas de norme                                                                                                                                                                     |
| Equilibre                      | Eau à l'équilibr                                     | re (3 analyses)                                                    | La référence de qualité demande une eau à l'équilibre ou légèrement incrustante                                                                                                  |
| Toubidité                      | Turbidité  • 0,1 NFU (3 analyses)                    |                                                                    | Limite de qualité à 1 NFU                                                                                                                                                        |
| Turbidite                      |                                                      |                                                                    | Référence de qualité à 0.5 NFU                                                                                                                                                   |
| Dureté                         | TH de 15.6 °F (3 an<br>TAC de 17.1 °F (3 a           | • /                                                                | Pas de norme                                                                                                                                                                     |
| Conductivité                   | Eaux moyennemen<br>Conductivité moyen<br>477.3 μS/cm | t minéralisées -<br>ne à 20°C de l'ordre de                        | La référence de qualité demande une eau<br>non corrosive entre 180 et 1000 μS/cm à<br>20°C et 200 à 1 100 μS/cm à 25°C                                                           |
| сот                            | Absence (3 an                                        | alyses)                                                            | Référence de qualité à 2 mgC/l                                                                                                                                                   |
|                                | Arsenic                                              | • 3.5 μg/l (3 analyses)                                            | Limite de qualité à 10 μg/l                                                                                                                                                      |
| Autres paramètres              | Pesticides                                           | Absence (3 analyses)                                               | Limite de qualité à 0.1 µg/l pour chaque pesticide (hors aldrine, dieldrine, heptachlore et heptaclororépoxyde : limite à 0.03 µg/l)  Total des pesticides devant être inférieur |
|                                |                                                      |                                                                    | à 0.5 µg/l                                                                                                                                                                       |

| Paramètres |                       | sultats sur la qualité de<br>ute (suivi ARS) | Limite et/ou référence de qualité au<br>niveau du point de mise en<br>distribution |
|------------|-----------------------|----------------------------------------------|------------------------------------------------------------------------------------|
|            | Nitrates              | 2.5 mg/l (3 analyses)                        | Limite de qualité à 50 mg/l                                                        |
|            | • Plomb               | Non analysé                                  | Limite de qualité à 10 µg/l                                                        |
|            | • Fer                 | Absence (3 analyses)                         | Référence de qualité à 200 μg/l                                                    |
|            | Sulfates              | 15 mg/l (3 analyses)                         | Référence de qualité à 250 mg/l                                                    |
|            | Manganèse             | Absence (3 analyses)                         | Référence de qualité à 50 μg/l                                                     |
|            | Nickel                | • 1 μg/l (3 analyses)                        | Limite de qualité à 20 μg/l                                                        |
|            | Fluorures             | Absence (3 analyses)                         | Limite de qualité à 1,5 mg/l                                                       |
|            | Autres     paramètres | Pas de dépassements                          |                                                                                    |

# 6.3 THEZA - FORAGE VILLAGE

| Paramètres                     | Synthèse des résultats sur la qualité de<br>l'eau brute (suivi ARS)                                                                          | Limite et/ou référence de qualité au<br>niveau du point de mise en<br>distribution                                     |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                              | Pas de norme concernant les bactéries revivifiantes                                                                    |
| Paramètres<br>bactériologiques | <ul> <li>Bactéries coliformes : Pas d'analyse</li> <li>E.Coli : Absence (3 analyses)</li> <li>Entérocoques : Absence (3 analyses)</li> </ul> | Limite de qualité à 0/100ml pour les eschérichia coli, les entérocoques et les cryptosporidium                         |
|                                |                                                                                                                                              | Référence de qualité à 0/100ml pour les coliformes et les bactéries sulfito-réductrices                                |
| рН                             | • 7.4                                                                                                                                        | Pas de norme                                                                                                           |
| Equilibre                      | Eau à l'équilibre (3 analyses)                                                                                                               | La référence de qualité demande une eau à l'équilibre ou légèrement incrustante                                        |
| Turbidité                      | 0.4 NEU (0. m. d. m. a.)                                                                                                                     | Limite de qualité à 1 NFU                                                                                              |
| Turblatte                      | 0,1 NFU (3 analyses)                                                                                                                         | Référence de qualité à 0.5 NFU                                                                                         |
| Dureté                         | TH de 21.6 °F (3 analyses) Pas d'analyse du TAC                                                                                              | Pas de norme                                                                                                           |
| Conductivité                   | Eaux moyennement minéralisées -<br>Conductivité moyenne à 20°C de l'ordre de<br>581 µS/cm                                                    | La référence de qualité demande une eau<br>non corrosive entre 180 et 1000 μS/cm à<br>20°C et 200 à 1 100 μS/cm à 25°C |
| сот                            | 0.1 mgC/l (3 analyses)                                                                                                                       | Référence de qualité à 2 mgC/l                                                                                         |
| Autres paramètres              | • Arsenic • 0.8 µg/l (3 analyses)                                                                                                            | Limite de qualité à 10 μg/l                                                                                            |

| Paramètres |                       | esultats sur la qualité de<br>rute (suivi ARS) | Limite et/ou référence de qualité au<br>niveau du point de mise en<br>distribution                                                                                                          |
|------------|-----------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Pesticides            | Absence (3 analyses)                           | Limite de qualité à 0.1 μg/l pour chaque pesticide (hors aldrine, dieldrine, heptachlore et heptaclororépoxyde : limite à 0.03 μg/l)  Total des pesticides devant être inférieur à 0.5 μg/l |
|            | Nitrates              | 9.3 mg/l (3 analyses)                          | Limite de qualité à 50 mg/l                                                                                                                                                                 |
|            | • Plomb               | Non analysé                                    | Limite de qualité à 10 μg/l                                                                                                                                                                 |
|            | • Fer                 | Absence (3 analyses)                           | Référence de qualité à 200 μg/l                                                                                                                                                             |
|            | Sulfates              | 28.9 mg/l (3 analyses)                         | Référence de qualité à 250 mg/l                                                                                                                                                             |
|            | Manganèse             | Absence (3 analyses)                           | Référence de qualité à 50 μg/l                                                                                                                                                              |
|            | Nickel                | • 1 μg/l (3 analyses)                          | Limite de qualité à 20 μg/l                                                                                                                                                                 |
|            | • Fluorures           | Absence (3 analyses)                           | Limite de qualité à 1,5 mg/l                                                                                                                                                                |
|            | Autres     paramètres | Pas de dépassement                             |                                                                                                                                                                                             |

# 6.4 LATOUR BAS ELNE - SERRALONGUE OUEST

| Paramètres                     | Synthèse des résultats sur la qualité de<br>l'eau brute (suivi ARS)                                                                          | Limite et/ou référence de qualité au<br>niveau du point de mise en<br>distribution                                     |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
|                                |                                                                                                                                              | Pas de norme concernant les bactéries revivifiantes                                                                    |  |
| Paramètres<br>bactériologiques | <ul> <li>Bactéries coliformes : Pas d'analyse</li> <li>E.Coli : Absence (2 analyses)</li> <li>Entérocoques : Absence (2 analyses)</li> </ul> | Limite de qualité à 0/100ml pour les eschérichia coli, les entérocoques et les cryptosporidium                         |  |
|                                |                                                                                                                                              | Référence de qualité à 0/100ml pour les coliformes et les bactéries sulfito-réductrices                                |  |
| рН                             | • 7.3 (2 mesures)                                                                                                                            | Pas de norme                                                                                                           |  |
| Equilibre                      | Pas d'analyse                                                                                                                                | La référence de qualité demande une eau<br>à l'équilibre ou légèrement incrustante                                     |  |
| Touch to the f                 | 0.44)[[].(0                                                                                                                                  | Limite de qualité à 1 NFU                                                                                              |  |
| Turbidité                      | 0,1 NFU (2 analyses)                                                                                                                         | Référence de qualité à 0.5 NFU                                                                                         |  |
| Dureté                         | TH de 13,6 °F (2 analyses) Pas d'analyse du TAC                                                                                              | Pas de norme                                                                                                           |  |
| Conductivité                   | Eaux moyennement minéralisées -<br>Conductivité moyenne à 25°C de l'ordre de<br>388 µS/cm                                                    | La référence de qualité demande une eau<br>non corrosive entre 180 et 1000 μS/cm à<br>20°C et 200 à 1 100 μS/cm à 25°C |  |

| Paramètres        |                       | sultats sur la qualité de<br>ute (suivi ARS) | Limite et/ou référence de qualité au<br>niveau du point de mise en<br>distribution                                                                                                          |
|-------------------|-----------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СОТ               | • 0 mgC/l (2 and      | alyses)                                      | Référence de qualité à 2 mgC/l                                                                                                                                                              |
|                   | Arsenic               | • 1 μg/l (2 analyses)                        | Limite de qualité à 10 μg/l                                                                                                                                                                 |
|                   | Pesticides            | • 0 μg/l (300 analyses)                      | Limite de qualité à 0.1 µg/l pour chaque pesticide (hors aldrine, dieldrine, heptachlore et heptaclororépoxyde : limite à 0.03 µg/l)  Total des pesticides devant être inférieur à 0.5 µg/l |
|                   | Nitrates              | • 2,8 mg/l (2 analyses)                      | Limite de qualité à 50 mg/l                                                                                                                                                                 |
| Autres paramètres | • Plomb               | Non analysé                                  | Limite de qualité à 10 μg/l                                                                                                                                                                 |
| Autros parametros | • Fer                 | 0 mg/l (2 analyses)                          | Référence de qualité à 200 μg/l                                                                                                                                                             |
|                   | Sulfates              | 14 mg/l (2 analyses)                         | Référence de qualité à 250 mg/l                                                                                                                                                             |
|                   | Manganèse             | Absence (2 analyses)                         | Référence de qualité à 50 μg/l                                                                                                                                                              |
|                   | Nickel                | • 1 μg/l (2 analyses)                        | Limite de qualité à 20 μg/l                                                                                                                                                                 |
|                   | • Fluorures           | 0,25 mg/l (2<br>analyses)                    | Limite de qualité à 1,5 mg/l                                                                                                                                                                |
|                   | Autres     paramètres | Pas de dépassement                           |                                                                                                                                                                                             |

# 6.5 SAINT CYPRIEN - CHAMP CAPTANT CAMP HORTS

| Paramètres                     | Synthèse des résultats sur la qualité de<br>l'eau brute (suivi ARS)                                                                            | Limite et/ou référence de qualité au<br>niveau du point de mise en<br>distribution             |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
|                                |                                                                                                                                                | Pas de norme concernant les bactéries revivifiantes                                            |  |
| Paramètres<br>bactériologiques | <ul> <li>Bactéries coliformes : Pas d'analyse</li> <li>E.Coli : Absence (16 analyses)</li> <li>Entérocoques : Absence (16 analyses)</li> </ul> | Limite de qualité à 0/100ml pour les eschérichia coli, les entérocoques et les cryptosporidium |  |
|                                |                                                                                                                                                | Référence de qualité à 0/100ml pour les coliformes et les bactéries sulfito-réductrices        |  |
| рН                             | • 7.0                                                                                                                                          | Pas de norme                                                                                   |  |
| Equilibre                      | Eau agressive (16 analyses)                                                                                                                    | La référence de qualité demande une eau<br>à l'équilibre ou légèrement incrustante             |  |
| Tumbidisé                      | E 4 NELL on 2047 (47 analyses)                                                                                                                 | Limite de qualité à 1 NFU                                                                      |  |
| Turbidité                      | • 5,1 NFU en 2017 (17 analyses)                                                                                                                | Référence de qualité à 0.5 NFU                                                                 |  |
| Dureté                         | TH de 22.1°F (16 analyses)<br>TAC de 14.4 °F (16 analyses)                                                                                     | Pas de norme                                                                                   |  |

| Paramètres        |                                                      | sultats sur la qualité de<br>rute (suivi ARS) | Limite et/ou référence de qualité au<br>niveau du point de mise en<br>distribution                                                                                               |
|-------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivité      | Eaux moyennemen<br>Conductivité moyer<br>448.3 µS/cm | it minéralisées -<br>nne à 20°C de l'ordre de | La référence de qualité demande une eau<br>non corrosive entre 180 et 1000 μS/cm à<br>20°C et 200 à 1 100 μS/cm à 25°C                                                           |
| СОТ               | • 0.2 mgC/l (16                                      | analyses)                                     | Référence de qualité à 2 mgC/l                                                                                                                                                   |
|                   | Arsenic                                              | • 0.4 μg/l (16 analyses)                      | Limite de qualité à 10 μg/l                                                                                                                                                      |
|                   | Pesticides                                           | Absence (16 analyses)                         | Limite de qualité à 0.1 µg/l pour chaque pesticide (hors aldrine, dieldrine, heptachlore et heptaclororépoxyde : limite à 0.03 µg/l)  Total des pesticides devant être inférieur |
|                   |                                                      |                                               | à 0.5 µg/l                                                                                                                                                                       |
|                   | Nitrates                                             | • 10.5 mg/l (16 analyses)                     | Limite de qualité à 50 mg/l                                                                                                                                                      |
|                   | • Plomb                                              | Non analysé                                   | Limite de qualité à 10 μg/l                                                                                                                                                      |
| Autres paramètres | • Fer                                                | • 11.1 mg/l (16 analyses)                     | Référence de qualité à 200 μg/l                                                                                                                                                  |
|                   | Sulfates                                             | • 59.3 mg/l (16 analyses)                     | Référence de qualité à 250 mg/l                                                                                                                                                  |
|                   | Manganèse                                            | • 1.3 µg/l (16 analyses)                      | Référence de qualité à 50 μg/l                                                                                                                                                   |
|                   | Nickel                                               | • 1 μg/l (16 analyses)                        | Limite de qualité à 20 μg/l                                                                                                                                                      |
|                   | • Fluorures                                          | Absence (16 analyses)                         | Limite de qualité à 1,5 mg/l                                                                                                                                                     |
|                   | Autres     paramètres                                | Pas de dépassement                            |                                                                                                                                                                                  |

## 6.6 QUALITE DE L'EAU TRAITEE

Aucune donnée de qualité ne nous a été transmise par l'ARS concernant les communes de Corneilladel-Vercol et Montescot. L'analyse porte ainsi sur les UDI de Théza, d'Alénya et de Saint Cyprien/Latour Bas-Elne.

#### 6.6.1 PARAMETRES BACTERIOLOGIQUES

Les paramètres bactériologiques bactéries aérobies revivifiables et coliformes totaux sur les eaux distribuées sont à surveiller car ils sont représentatifs de la qualité de l'eau distribuée :

- Les germes revivifiables sont considérés comme des indicateurs de bon fonctionnement et de bonne maintenance des ouvrages de distribution. L'interprétation des résultats est basée sur l'évolution temporelle de dénombrement obtenu pour un même site de prélèvement. L'évolution de la quantité de ces germes doit être suivie pour connaître l'évolution de la qualité de l'eau. Cependant, cette flore, lorsqu'elle est trop importante, peut gêner la détection d'autres germes.
- La présence des bactéries coliformes témoigne d'une contamination certaine mais dans la mesure où leur origine n'est pas uniquement fécale, cette contamination est à étudier en fonction de leur répétition dans le temps, de son ampleur et de sa dissémination. La découverte de bactéries coliformes doit entraîner la recherche de présence d'E. Coli.
- La détection d'E. Coli dans une eau traitée est une indication claire d'une contamination d'origine fécale qui doit faire sérieusement soupçonner la présence de microorganismes pathogènes.

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 52 / 118
Rapport d'étude Version c

Les résultats des analyses ont été relevés entre 2015 et 2020.

La conformité bactériologique est de 100% sur les UDI de Théza, d'Alénya et de Saint Cyprien/Latour Bas-Elne.

Un unique dépassement des limites de qualité a été observé en juin 2016 sur le paramètre bactéries coliformes, au niveau de l'office de tourisme de Saint Cyprien.

Concernant les bactéries aérobies revivifiables, il n'existe pas de limite ou de référence de qualité pour ce paramètre, aussi bien sur l'unité de production que sur le réseau de distribution.

Les tableaux ci-dessous présente le nombre de valeurs non nulles mesurées entre 2015 et 2020 en sortie des réservoirs et sur le réseau de distribution :

| Alénya                             |       |                      |         |         |         |                                       |
|------------------------------------|-------|----------------------|---------|---------|---------|---------------------------------------|
| Paramètres                         | Unité | Nombre de<br>mesures | Minimum | Moyenne | Maximum | Commentaire                           |
| Paramètres microbiologiques        |       |                      |         |         |         |                                       |
| bact aer revivifiables à 36° - 44h | n/mL  | 75                   | 0       | 5       | 300     | Nombre de dénombrements non nuls : 24 |
| bact aer revivifiables à 22° - 68h | n/mL  | 75                   | 0       | 5       | 300     | Nombre de dénombrements non nuls : 18 |

| Théza                              |       |                      |         |         |         |                                       |
|------------------------------------|-------|----------------------|---------|---------|---------|---------------------------------------|
| Paramètres                         | Unité | Nombre de<br>mesures | Minimum | Moyenne | Maximum | Commentaire                           |
| Paramètres microbiologiques        |       |                      |         |         |         |                                       |
| bact aer revivifiables à 36° - 44h | n/mL  | 71                   | 0       | 8       | 216     | Nombre de dénombrements non nuls : 30 |
| bact aer revivifiables à 22° - 68h | n/mL  | 71                   | 0       | 9       | 300     | Nombre de dénombrements non nuls : 19 |

|                                    | Latour Bas-⊟ne - St Cyprien |                      |         |         |         |                                        |  |
|------------------------------------|-----------------------------|----------------------|---------|---------|---------|----------------------------------------|--|
| Paramètres                         | Unité                       | Nombre de<br>mesures | Minimum | Moyenne | Maximum | Commentaire                            |  |
| Paramètres microbiologiques        |                             |                      |         |         |         |                                        |  |
| bact aer revivifiables à 36° - 44h | n/mL                        | 303                  | 0       | 11      | 300     | Nombre de dénombrements non nuls : 109 |  |
| bact aer revivifiables à 22° - 68h | n/mL                        | 303                  | 0       | 8       | 300     | Nombre de dénombrements non nuls : 71  |  |

Environ 30% des analyses présentent des valeurs non nulles. La plus grande valeur mesurée est de 300 n/ml pour les bactéries revivifiables à 22 et 36°.

## 6.6.2 RESIDUEL DE CHLORE

La réglementation française (Code de la Santé Publique) fixe l'obligation de résultats (0 germe témoin de contamination fécale / 100 ml).

La seule contrainte en ce qui concerne les taux de chlore dans le réseau est celle du plan Vigipirate (niveau rouge à l'heure actuelle, depuis le 7 juillet 2005) et correspond à une obligation de maintenir une concentration minimale en chlore libre de 0,3 mg/l en sortie des réservoirs et viser une concentration de 0,1 mg/l en tout point du réseau de distribution.

L'étude des résiduels de désinfectant a été réalisée sur l'ensemble des analyses effectuées entre 2015 et 2020.

Sur les analyses réalisées en sortie des réservoirs, sur les années 2015 à 2020, Quasiment aucune valeur ne respecte la concentration minimale préconisée par le plan Vigipirate. En effet :

- Aucune valeur n'est conforme sur l'UDI de Théza
- 94% des valeurs de l'UDI de Alénya ne sont pas conformes
- 81% des valeurs de l'UDI de Latour Bas Elne Saint Cyprien ne sont pas conformes

#### 6.6.2.1 <u>ALENYA</u>

Le tableau ci-dessous présente les analyses réalisées pour les années 2015 à 2020 en sortie de l'ouvrage de stockage d'Alénya :

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 53 / 118
Rapport d'étude Version c

| Date       | Valeur (mg(Cl2)/L) |
|------------|--------------------|
| 09/02/2015 | 0,1                |
| 26/05/2015 | 0,04               |
| 26/10/2015 | 0,11               |
| 19/04/2016 | 0,09               |
| 04/07/2016 | 0,08               |
| 21/11/2016 | 0,11               |
| 20/03/2017 | 0,18               |
| 18/07/2017 | 0,12               |
| 30/11/2017 | 0,08               |
| 08/03/2018 | 0,04               |
| 23/07/2018 | 0,23               |
| 28/11/2018 | 0,09               |
| 06/03/2019 | 0,24               |
| 12/07/2019 | 0,26               |
| 19/11/2019 | 0,15               |
| 17/08/2020 | 0,28               |

Nous pouvons observer sur le tableau précédent que les taux résiduels de chlore sont inférieurs à 0.3 mg/l en sortie de réservoir.

Sur le réseau de distribution, 34 % des analyses sont inférieures à la valeur de 0,1 mg/l prescrite par le plan Vigipirate, ci-dessous pour les années 2015 à 2020 :

| Date       | Valeur (mg(Cl2)/L) |
|------------|--------------------|
| 19/11/2015 | 0,09               |
| 07/12/2015 | 0,07               |
| 01/02/2016 | 0                  |
| 07/03/2016 | 0                  |
| 20/05/2016 | 0,04               |
| 20/05/2016 | 0,04               |
| 27/06/2016 | 0                  |
| 18/07/2016 | 0                  |
| 05/09/2016 | 0                  |
| 03/10/2016 | 0                  |
| 27/02/2017 | 0,09               |
| 23/08/2017 | 0,04               |
| 31/10/2017 | 0                  |
| 12/01/2018 | 0,09               |
| 24/01/2019 | 0,09               |
| 15/05/2019 | 0                  |
| 30/08/2019 | 0,04               |
| 06/09/2019 | 0,06               |
| 13/05/2020 | 0                  |
| 24/07/2020 | 0,08               |

Les taux de chlore libre sont insuffisants sur le réseau de distribution sur 20 analyses réalisées entre 2015 et 2020.

En raisonnant sur le nombre total d'analyses et en le comparant au nombre d'échantillons qui présentent des taux de chlore libre insuffisants, on obtient :

|                  | Nombre<br>d'échantillons<br>avec des taux<br>de chlore libre<br>insuffisant | Nombre dtotal<br>d'échantillons | Pourcentage<br>d'échantillons<br>avec taux de<br>chlore libre<br>insuffisant | Valeur<br>moyenne<br>(mg/l) | Nombre<br>d'échantillons<br>présentant<br>une valeur<br>nulle |
|------------------|-----------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------|
| Sortie réservoir | 16                                                                          | 17                              | 94%                                                                          | 0,15                        | 0                                                             |
| UDI              | 20                                                                          | 59                              | 34%                                                                          | 0,13                        | 9                                                             |
| Total            | 36                                                                          | 76                              | 64%                                                                          | -                           | 9                                                             |

Ainsi, le déficit de résiduel de chlore apparait dès la sortie du réservoir communal.

Les taux de chlore libre sur le réseau de distribution sont donc insuffisants étant donné que plus de la moitié des échantillons analysés ne répondent pas aux prescriptions du plan Vigipirate.

## 6.6.2.2 THEZA

Le tableau ci-dessous présente les analyses réalisées pour les années 2015 à 2020 en sortie de l'ouvrage de stockage de Théza :

| Date       | Valeur (mg(Cl2)/L) |
|------------|--------------------|
| 08/04/2015 | 0,25               |
| 28/09/2015 | 0,23               |
| 07/03/2016 | 0,26               |
| 04/07/2016 | 0,22               |
| 03/04/2017 | 0,17               |
| 31/10/2017 | 0                  |
| 08/03/2018 | 0                  |
| 18/09/2018 | 0,1                |
| 06/03/2019 | 0,11               |
| 30/08/2019 | 0,17               |
| 02/06/2020 | 0,27               |

Nous pouvons observer sur le tableau précédent que les taux résiduels de chlore sont inférieurs à 0.3 mg/l en sortie de réservoir.

Sur le réseau de distribution, 42 % des analyses sont inférieures à la valeur de 0,1 mg/l prescrite par le plan Vigipirate, ci-dessous pour les années 2015 à 2020 :

| Date       | Valeur (mg(Cl2)/L) |
|------------|--------------------|
| 26/02/2015 | 0                  |
| 26/02/2015 | 0                  |
| 26/02/2015 | 0                  |
| 19/04/2016 | 0,09               |
| 12/06/2017 | 0,09               |
| 11/09/2017 | 0,04               |
| 29/09/2017 | 0                  |
| 10/11/2017 | 0,09               |
| 28/12/2017 | 0,04               |
| 08/01/2018 | 0,06               |
| 08/03/2018 | 0,08               |
| 05/04/2018 | 0,05               |
| 30/05/2018 | 0,07               |
| 06/06/2018 | 0,04               |
| 23/07/2018 | 0,05               |
| 08/08/2018 | 0                  |
| 15/10/2018 | 0,04               |
| 28/11/2018 | 0,05               |
| 28/11/2018 | 0,05               |
| 24/01/2019 | 0,05               |
| 25/02/2019 | 0,09               |
| 15/04/2019 | 0,09               |
| 15/10/2019 | 0,07               |
| 19/11/2019 | 0,04               |
| 09/12/2019 | 0                  |
| 06/04/2020 | 0,04               |

Les taux de chlore libre sont insuffisants sur le réseau de distribution sur 26 analyses réalisées entre 2015 et 2020.

En raisonnant sur le nombre total d'analyses et en le comparant au nombre d'échantillons qui présentent des taux de chlore libre insuffisants, la synthèse est la suivante :

|                  | Nombre<br>d'échantillons avec<br>des taux de chlore<br>libre insuffisant | Nombre dtotal<br>d'échantillons | Pourcentage<br>d'échantillons avec<br>taux de chlore libre<br>insuffisant | Valeur moyenne<br>(mg/l) | Nombre<br>d'échantillons<br>présentant une<br>valeur nulle |
|------------------|--------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|--------------------------|------------------------------------------------------------|
| Sortie réservoir | 11                                                                       | 11                              | 100%                                                                      | 0,16                     | 2                                                          |
| UDI              | 26                                                                       | 62                              | 42%                                                                       | 0,14                     | 6                                                          |
| Total            | 37                                                                       | 73                              | 71%                                                                       | -                        | 8                                                          |

Ainsi, le déficit de résiduel de chlore apparait dès la sortie du réservoir communal.

Les taux de chlore libre sur le réseau de distribution sont donc insuffisants étant donné que plus de la moitié des échantillons analysés ne répondent pas aux prescriptions du plan Vigipirate.

## 6.6.2.3 <u>LATOUR BAS ELNE-SAINT CYPRIEN</u>

Le tableau ci-dessous présente les analyses réalisées pour les années 2015 à 2020 en sortie de l'ouvrage de stockage de Saint-Cyprien :

| Date       | Valeur (mg(Cl2)/L) |
|------------|--------------------|
| 09/02/2015 | 0                  |
| 26/05/2015 | 0,11               |
| 14/08/2015 | 0,18               |
| 28/09/2015 | 0                  |
| 26/11/2015 | 0,29               |
| 01/02/2016 | 0,23               |
| 19/04/2016 | 0,28               |
| 19/05/2016 | 0,29               |
| 05/09/2016 | 0,12               |
| 21/11/2016 | 0,11               |
| 27/02/2017 | 0,04               |
| 03/04/2017 | 0,08               |
| 08/06/2017 | 0,14               |
| 16/08/2017 | 0,12               |
| 23/08/2017 | 0,16               |
| 31/10/2017 | 0,23               |
| 05/02/2018 | 0,15               |
| 05/04/2018 | 0,15               |
| 06/06/2018 | 0,13               |
| 05/12/2018 | 0,17               |
| 18/02/2019 | 0,25               |
| 24/04/2019 | 0,25               |
| 17/06/2019 | 0,27               |
| 30/08/2019 | 0,21               |
| 15/10/2019 | 0,26               |
| 16/12/2019 | 0,25               |
| 16/03/2020 | 0,24               |
| 13/05/2020 | 0,18               |
| 20/07/2020 | 0,28               |

Nous pouvons observer sur le tableau précédent que les taux résiduels de chlore sont inférieurs à 0.3 mg/l en sortie de réservoir.

Sur le réseau de distribution, 36 % des analyses sont inférieures à la valeur de 0,1 mg/l prescrite par le plan Vigipirate, ci-dessous pour les années 2015 à 2020 :

| Date       | Valeur (mg(Cl2)/L) | Date       | Valeur (mg(Cl2)/L) |            |                    |
|------------|--------------------|------------|--------------------|------------|--------------------|
| 19/01/2015 | 0                  | 20/03/2017 | 0,09               | Date       | Valeur (mg(Cl2)/L) |
| 04/02/2015 | 0                  | 20/03/2017 | 0,02               | 12/02/2018 | 0,05               |
| 10/02/2015 | 0                  | 29/03/2017 | 0,05               | 12/02/2018 | 0,04               |
| 15/04/2015 | 0,09               | 10/04/2017 | 0,01               | 26/02/2018 | 0,06               |
| 27/04/2015 | 0,09               | 10/04/2017 | 0,02               | 26/02/2018 | 0                  |
| 24/06/2015 | 0,09               | 27/04/2017 | 0,08               | 08/03/2018 | 0,04               |
| 07/08/2015 | 0                  | 27/04/2017 | 0,06               | 15/03/2018 | 0,06               |
| 07/08/2015 | 0                  | 04/05/2017 | 0,05               | 15/03/2018 | 0                  |
| 21/08/2015 | 0,06               | 04/05/2017 | 0,06               | 22/03/2018 | 0                  |
| 27/08/2015 | 0                  | 15/05/2017 | 0,04               | 22/03/2018 | 0                  |
| 18/09/2015 | 0,05               | 15/05/2017 | 0,05               | 20/04/2018 | 0,04               |
| 07/10/2015 | 0                  | 30/05/2017 | 0                  | 27/04/2018 | 0,08               |
| 26/10/2015 | 0                  | 12/06/2017 | 0,09               | 31/05/2018 | 0,08               |
| 08/12/2015 | 0                  | 02/08/2017 | 0,05               | 12/11/2018 | 0                  |
| 10/06/2016 | 0                  | 04/08/2017 | 0,08               | 12/11/2018 | 0                  |
| 27/06/2016 | 0                  | 10/08/2017 | 0,07               | 26/11/2018 | 0                  |
| 01/08/2016 | 0                  | 28/09/2017 | 0,06               | 28/11/2018 | 0,04               |
| 12/09/2016 | 0                  | 28/09/2017 | 0,05               | 12/04/2019 | 0,04               |
| 28/09/2016 | 0,04               | 04/10/2017 | 0,08               | 15/05/2019 | 0,09               |
| 05/10/2016 | 0                  | 04/10/2017 | 0,07               | 15/07/2019 | 0,06               |
| 26/10/2016 | 0,04               | 17/10/2017 | 0,05               | 05/08/2019 | 0,07               |
| 07/12/2016 | 0                  | 18/10/2017 | 0,05               | 05/08/2019 | 0,04               |
| 05/01/2017 | 0,07               | 09/11/2017 | 0,06               | 14/08/2019 | 0,08               |
| 11/01/2017 | 0,04               | 09/11/2017 | 0,09               | 14/08/2019 | 0,05               |
| 18/01/2017 | 0,04               | 09/11/2017 | 0,09               | 26/09/2019 | 0,04               |
| 23/01/2017 | 0,04               | 20/11/2017 | 0,04               | 26/09/2019 | 0,04               |
| 01/02/2017 | 0,07               | 20/11/2017 | 0,04               | 19/11/2019 | 0,05               |
| 01/02/2017 | 0,09               | 04/12/2017 | 0,09               | 01/04/2020 | 0,06               |
| 09/02/2017 | 0,04               | 04/12/2017 | 0,07               | 28/04/2020 | 0,09               |
| 20/02/2017 | 0,02               | 08/01/2018 | 0,05               | 04/05/2020 | 0,07               |
| 20/02/2017 | 0,03               | 08/01/2018 | 0,06               | 09/06/2020 | 0,08               |
| 09/03/2017 | 0,08               | 25/01/2018 | 0,04               | 27/07/2020 | 0,08               |
| 09/03/2017 | 0,09               | 25/01/2018 | 0,04               | 06/08/2020 | 0,07               |

Les taux de chlore libre sont insuffisants sur le réseau de distribution sur 20 analyses réalisées entre 2015 et 2020.

En raisonnant sur le nombre total d'analyses et en le comparant au nombre d'échantillons qui présentent des taux de chlore libre insuffisants, on obtient :

|                  | Nombre<br>d'échantillons<br>avec des taux<br>de chlore libre<br>insuffisant | Nombre dtotal<br>d'échantillons | Pourcentage<br>d'échantillons<br>avec taux de<br>chlore libre<br>insuffisant | Valeur<br>moyenne<br>(mg/l) | Nombre<br>d'échantillons<br>présentant<br>une valeur<br>nulle |
|------------------|-----------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------|
| Sortie réservoir | 29                                                                          | 36                              | 81%                                                                          | 0,21                        | 2                                                             |
| UDI              | 98                                                                          | 271                             | 36%                                                                          | 0,14                        | 23                                                            |
| Total            | 127                                                                         | 307                             | 58%                                                                          | -                           | 25                                                            |

Ainsi, le déficit de résiduel de chlore apparait dès la sortie du réservoir.

Les taux de chlore libre sur le réseau de distribution sont donc insuffisants étant donné que plus de la moitié des échantillons analysés ne répondent pas aux prescriptions du plan Vigipirate.

Il sera ainsi nécessaire de recalibrer le système de désinfection sur les communes de Théza, Alénya, Latour Bas Elne et Saint Cyprien afin d'atteindre les valeurs minimales préconisées par le plan Vigipirate de 0.3 mg/l en sortie des réservoirs, et 0.1 mg/l sur l'ensemble du réseau de distribution.

#### 6.6.3 TURBIDITE

La turbidité est un paramètre organoleptique qui mesure le trouble de l'eau. Elle est due aux particules colloïdales ou en suspension dans l'eau. En dehors de la modification des propriétés organoleptiques de l'eau qu'elle entraîne, la turbidité n'est pas dangereuse d'un point de vue sanitaire. Par contre, son apparition a une importance sur les autres paramètres définissant la qualité de l'eau, notamment sur l'aspect bactériologique. En effet, une turbidité élevée est propice à une contamination bactériologique, puisque la présence de MES facilite le développement des microorganismes qui peuvent s'adsorber sur les particules. Il apparaît donc également nécessaire d'éliminer la turbidité, même ponctuelle, des eaux brutes.

De plus la turbidité est un indicateur de la présence éventuelle de kystes parasitaires tels que le Cryptosporidium et le Giardia. En effet, il a été mis en évidence un accompagnement des évènements turbides par ces kystes parasitaires. Le chlore permet d'inactiver le Giardia, mais pas les Cryptosporidium.

Ainsi le suivi et le traitement de la turbidité permet de s'affranchir de ces kystes parasitaires et de se prémunir des maladies hydriques qui y sont associées.

Aujourd'hui, la réglementation française exige un niveau maximum de 1 NFU (limite de qualité) et indique qu'un niveau de 0,5 NFU est souhaitable (référence de qualité) au point de mise en distribution.

Sur le réseau de distribution (aux robinets), un niveau de 2 NFU (référence de qualité) est souhaitable.

Sur la commune de Théza, la valeur moyenne mesurée en sortie du réservoir est de 0,19 NFU, et celle sur le réseau de distribution est de 0,18 NFU. Entre 2015 et 2020, aucun dépassement des limites ou des références de qualité n'a été observé.

Sur la commune de Alénya, la valeur moyenne mesurée en sortie du réservoir est de 0,16 NFU, et celle sur le réseau de distribution est de 0,17 NFU. Entre 2015 et 2020, aucun dépassement des limites ou des références de qualité n'a été observé.

Sur l'UDI de Latour Bas Elne- Saint Cyprien, la valeur moyenne mesurée en sortie du réservoir est de 0,86 NFU, et celle sur le réseau de distribution est de 0,18 NFU. Un dépassement conséquent (23,5 NFU) a été observé le 9 février 2015.

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 59 / 118
Rapport d'étude Version c

Les eaux distribuées sur les communes de Théza, Alénya, Latour Bas-Elne et Saint-Cyprien semblent ainsi peu sensibles à la turbidité.

## 6.6.4 POTENTIEL DE DISSOLUTION DU PLOMB

## 6.6.4.1 ETUDE DU POTENTIEL DE DISSOLUTION DU PLOMB

La limite de qualité du plomb dans l'eau destinée à la consommation humaine a été abaissée à 10 µg/l le 25 décembre 2013. Cette valeur doit être respectée aux robinets normalement utilisés pour la consommation humaine.

Le Conseil supérieur d'hygiène publique de France et l'Agence française de sécurité sanitaire des aliments ont rappelé, dans leurs avis respectifs du 9 décembre 2003 complété le 9 novembre 2004 et du 10 décembre 2003 que seule la suppression des canalisations en plomb au niveau des branchements publics et des réseaux intérieurs permettra de respecter la limite de qualité fixée pour le plomb à 10 µg/l depuis la fin de l'année 2013.

L'évaluation du potentiel de dissolution du plomb est basée sur des mesures de pH terrain réalisées in situ lors des prélèvements, dont le nombre minimal dépend des débits journaliers distribués. Le tableau suivant présente le nombre de mesures réglementaire fixé par l'arrêté du 4 novembre 2002.

| Débit en m3/j                                 | < 100                                                               | 100 à 999 | 1 000 à 9 999 | 10 000 à 19 999 | > 20 000 |
|-----------------------------------------------|---------------------------------------------------------------------|-----------|---------------|-----------------|----------|
| Nombre minimal de<br>mesures de pH à réaliser | 2                                                                   | 4         | 6             | 12              | 24       |
| Modalités de réalisation                      | La moitié des analyses en saison chaude et l'autre en saison froide |           |               | froide          |          |

L'évolution du potentiel de dissolution a été réalisée à l'échelle des Unités de Distribution (UDI) de :

- Théza
- Alénya
- Latour Bas Elne-Saint Cyprien

Les débits moyens journaliers distribués entre 2015 et 2018 sont respectivement de 313 m³/j, de 687 m³/j et de 5 536 m³/j.

Le nombre d'analyses minimum pour les communes de Théza et d'Alénya sont de 4 par an et celles de Latour Bas-Elne-Saint Cyprien de 6. Entre 2015 et 2020, au minimum 6 analyses pH ont été réalisées chaque année pour chacune des communes citées précédemment. De plus, ces analyses sont réparties sur l'ensemble de l'année : saison chaude et saison froide. L'étude du potentiel de dissolution du plomb est donc valable.

La valeur de référence de pH est définie à partir de l'ensemble des analyses disponibles relevant du contrôle sanitaire et, le cas échéant, de la surveillance réalisée par la personne publique ou privée responsable de la distribution d'eau.

Elle correspond:

- au pH min lorsque le nombre d'analyses est inférieur à 10,
- au 10e centile lorsque le nombre total d'analyses est compris entre 10 et 19,
- au 5<sup>e</sup> centile lorsque le nombre total d'analyses est supérieur ou égal à 20.

Ainsi, d'après le tableau fourni en annexe de l'arrêté du 4 novembre 2002 :

« La valeur de référence de pH permet d'évaluer le potentiel de dissolution du plomb dans l'eau aux points considérés comme représentatifs de la qualité de l'eau de l'unité de distribution. »

Cette valeur de référence de pH est à reporter dans une des classes de référence de pH telles que définies dans la grille d'interprétation ci-après :

| Classe de pH | Potentiel de dissolution du plomb   |
|--------------|-------------------------------------|
| pH ≤ 7       | Potentiel de dissolution très élevé |
| 7 < pH < 7,5 | Potentiel de dissolution élevé      |
| 7,5 < pH < 8 | Potentiel de dissolution moyen      |
| 8 ≤ pH       | Potentiel de dissolution faible     |

Les potentiels de dissolution entre 2015 et 2020 sont présentés dans les tableaux ci-dessous :

#### 6.6.4.1.1 Alénya

| Type de contrôle        | Valeur de<br>référence | Potentiel de dissolution du plomb |
|-------------------------|------------------------|-----------------------------------|
| Contrôle sanitaire 2015 | 7,8                    | Potentiel de dissolution moyen    |
| Contrôle sanitaire 2016 | 7,8                    | Potentiel de dissolution moyen    |
| Contrôle sanitaire 2017 | 7,9                    | Potentiel de dissolution moyen    |
| Contrôle sanitaire 2018 | 7,9                    | Potentiel de dissolution moyen    |
| Contrôle sanitaire 2019 | 7,9                    | Potentiel de dissolution moyen    |

Sur la commune d'Alénya, le potentiel de dissolution du plomb est donc moyen.

#### 6.6.4.1.2 Théza

| Type de contrôle        | Valeur de<br>référence | Potentiel de dissolution du plomb |
|-------------------------|------------------------|-----------------------------------|
| Contrôle sanitaire 2015 | 7,6                    | Potentiel de dissolution moyen    |
| Contrôle sanitaire 2016 | 7,7                    | Potentiel de dissolution moyen    |
| Contrôle sanitaire 2017 | 7,6                    | Potentiel de dissolution moyen    |
| Contrôle sanitaire 2018 | 7,7                    | Potentiel de dissolution moyen    |
| Contrôle sanitaire 2019 | 7,6                    | Potentiel de dissolution moyen    |

Sur la commune de Théza, le potentiel de dissolution du plomb est donc moyen.

## 6.6.4.1.3 Latour Bas Elne-Saint Cyprien

| Type de contrôle        | Valeur de<br>référence | Potentiel de dissolution du plomb   |
|-------------------------|------------------------|-------------------------------------|
| Contrôle sanitaire 2015 | 7,0                    | Potentiel de dissolution très élevé |
| Contrôle sanitaire 2016 | 6,9                    | Potentiel de dissolution très élevé |
| Contrôle sanitaire 2017 | 7,0                    | Potentiel de dissolution très élevé |
| Contrôle sanitaire 2018 | 7,0                    | Potentiel de dissolution très élevé |
| Contrôle sanitaire 2019 | 7,1                    | Potentiel de dissolution élevé      |

Sur cette UDI de deux communes, le potentiel de dissolution du plomb est donc élevé à très élevé.

#### 6.6.4.2 <u>ETAT ACTUEL ET RENOUVELLEMENT DES BRANCHEMENTS EN PLOMB</u>

D'après la communauté de communes, il n'y a plus de branchements en plomb sur la partie publique. A noter que la CC ne dispose pas de listing des branchements en plomb potentiellement existants sur les secteurs privés du territoire.

## 6.6.5 EQUILIBRE CALCO-CARBONIQUE

Selon la circulaire du 23 janvier 2007 (DGS/SD7A/2007/39), les eaux destinées à la consommation humaine doivent être à l'équilibre calco-carbonique ou légèrement incrustantes (1ère et 4ème classe).

Les classes de catégorie d'eau sont définies de la manière suivante :

| Classe      | Etat d'équilibre de l'eau          | Valeur du pH                     |
|-------------|------------------------------------|----------------------------------|
| 1ère classe | Eau à l'équilibre calco-carbonique | -0,2< pHeq – pH in situ < 0,2    |
| 2ème classe | Eau légèrement agressive           | 0,2 < pHeq – pH in situ < 0,3    |
| 3ème classe | Eau agressive                      | 0,3 < pHeq – pH in situ          |
| 4ème classe | Eau légèrement incrustante         | -0,3 < pHeq – pH in situ < - 0,2 |
| 5ème classe | Eau incrustante                    | pHeq – pH in situ < -0,3         |

Sur la base des résultats des analyses terrain du contrôle sanitaire, il a pu être étudié l'équilibre calco-carbonique dont les résultats sont repris dans les tableaux suivants :

#### 6.6.5.1 ALENYA

| Date       | Point de surveillance | Equilibre                    |
|------------|-----------------------|------------------------------|
| 26/05/2015 | SORTIE RESERVOIR      | Eaux légèrement incrustantes |
| 04/07/2016 | SORTIE RESERVOIR      | Eaux légèrement incrustantes |
| 30/11/2017 | SORTIE RESERVOIR      | Eaux légèrement incrustantes |
| 23/07/2018 | SORTIE RESERVOIR      | Eaux à l'équilibre           |
| 19/11/2019 | SORTIE RESERVOIR      | Eaux à l'équilibre           |
| 20/04/2020 | SORTIE RESERVOIR      | Eaux à l'équilibre           |

Ainsi, les eaux distribuées sur la commune sont la plupart du temps soit à l'équilibre soit légèrement incrustantes. Depuis juin 2012, elles sont soit de 1<sup>ère</sup> classe, soit de 4<sup>ème</sup> classe, et donc **conformes** à la circulaire du 23 janvier 2007.

## 6.6.5.2 <u>Theza</u>

| Date       | Point de surveillance | Equilibre          |
|------------|-----------------------|--------------------|
| 08/04/2015 | SORTIE RESERVOIR      | Eaux à l'équilibre |
| 07/03/2016 | SORTIE RESERVOIR      | Eaux à l'équilibre |
| 31/10/2017 | SORTIE RESERVOIR      | Eaux à l'équilibre |
| 18/09/2018 | SORTIE RESERVOIR      | Eaux à l'équilibre |
| 06/03/2019 | SORTIE RESERVOIR      | Eaux à l'équilibre |
| 02/06/2020 | SORTIE RESERVOIR      | Eaux à l'équilibre |

Ainsi, les eaux distribuées sur la commune sont à l'équilibre. Depuis juin 2012, elles sont de 1ère classe, et donc **conformes à la circulaire du 23 janvier 2007.** 

## 6.6.5.3 <u>LATOUR BAS ELNE- SAINT-CYPRIEN</u>

| Date       | Point de surveillance | Equilibre       |
|------------|-----------------------|-----------------|
| 30/07/2015 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 28/09/2015 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 26/11/2015 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 01/02/2016 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 19/05/2016 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 21/11/2016 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 27/02/2017 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 08/06/2017 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 31/10/2017 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 05/04/2018 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 01/08/2018 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 05/12/2018 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 18/02/2019 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 17/06/2019 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 15/10/2019 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 28/01/2020 | SORTIE CHATEAU D'EAU  | Eaux agressives |
| 13/05/2020 | SORTIE CHATEAU D'EAU  | Eaux agressives |

Ainsi, les eaux distribuées sur la commune sont agressives. Depuis juin 2012, elles sont de 3ème classe, et donc **non conformes à la circulaire du 23 janvier 2007.** 

## 6.6.6 AUTRES PARAMETRES SPECIFIQUES

## 6.6.6.1 <u>ALENYA</u>

| Paramètre     | Limite/Référence de qualité                                                                                                                                                     | Résultats du contrôle sanitaire                                                                                                                                                                                                                  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arsenic       | La limite de qualité pour le paramètre arsenic est de 10 µg/l                                                                                                                   | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |
| Baryum        | La limite de qualité pour le paramètre baryum est de 0.7 mg/l.                                                                                                                  | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |
| Radioactivité | Le paramètre permettant d'apprécier la radioactivité d'une eau est l'indicateur « Dose Totale Indicative » (DTI). La limite de qualité pour le paramètre DTI est de 0.1 mSv/an. | Aucun dépassement de référence de qualité n'a été observé sur la commune entre 2015 et 2020.  A noter un dépassement de la valeur guide pour le paramètre activité alpha globale le 19/11/2019 à hauteur de 0,11 Bq/L (valeur guide = 0,1 Bq/L). |
| Fer           | La référence de qualité pour le paramètre fer est 200 μg/l.                                                                                                                     | Aucun dépassement de cette référence de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                               |
| Nickel        | La limite de qualité pour le paramètre nickel est de 20 µg/l.                                                                                                                   | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |
| Nitrates      | La limite de qualité pour le paramètre nitrates est de 50 mg/l.                                                                                                                 | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |

| Paramètre            | Limite/Référence de qualité                                                                                                                                                                 | Résultats du contrôle sanitaire                                                                                             |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Pesticides           | Limite de qualité à 0.1 µg/l pour chaque pesticide (hors aldrine, dieldrine, heptachlore et heptaclororépoxyde : limite à 0.03 µg/l)  Total des pesticides devant être inférieur à 0.5 µg/l | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                             |
|                      | α υ.υ μg/ι                                                                                                                                                                                  |                                                                                                                             |
| Plomb                | La limite de qualité pour le paramètre plomb est de 10 $\mu$ g/l depuis fin 2013, et était de 25 $\mu$ g/l avant.                                                                           | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                             |
| Température          | La référence de qualité pour la température est de 25 °C.                                                                                                                                   | 4 dépassements de cette référence de qualité ont été observés entre 2015 et 2020 sur 81 analyses soit 5% de dépassements.   |
| Conductivité         | Pas de limite ou de référence                                                                                                                                                               | Toutes les valeurs sont réglementaires.                                                                                     |
| TH et TAC            | Pas de limite ou de référence                                                                                                                                                               | Le TH moyen mesuré en sortie de réservoir sur les années 2015 et 2020 est de 16.0°F. Cela correspond à une eau plutôt dure. |
|                      |                                                                                                                                                                                             | Le TAC moyen mesuré en sortie de réservoir sur les années 2015 à 2020 est de 16.9°F.                                        |
| Autres<br>paramètres |                                                                                                                                                                                             | Aucun dépassement observé                                                                                                   |

# 6.6.6.2 <u>Theza</u>

| Paramètre     | Limite/Référence de qualité                                                                                                                                                                 | Résultats du contrôle sanitaire                                                                                                                                                                                                                  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arsenic       | La limite de qualité pour le paramètre arsenic est de 10 μg/l                                                                                                                               | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |
| Baryum        | La limite de qualité pour le paramètre baryum est de 0.7 mg/l.                                                                                                                              | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |
| Radioactivité | Le paramètre permettant d'apprécier la radioactivité d'une eau est l'indicateur « Dose Totale Indicative » (DTI). La limite de qualité pour le paramètre DTI est de 0.1 mSv/an.             | Aucun dépassement de référence de qualité n'a été observé sur la commune entre 2015 et 2020.  A noter un dépassement de la valeur guide pour le paramètre activité alpha globale le 08/04/2015 à hauteur de 0,14 Bq/L (valeur guide = 0,1 Bq/L). |
| Fer           | La référence de qualité pour le paramètre fer est 200 μg/l.                                                                                                                                 | Aucun dépassement de cette référence de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                               |
| Nickel        | La limite de qualité pour le paramètre nickel est de 20 µg/l.                                                                                                                               | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |
| Nitrates      | La limite de qualité pour le paramètre nitrates est de 50 mg/l.                                                                                                                             | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |
| Pesticides    | Limite de qualité à 0.1 µg/l pour chaque pesticide (hors aldrine, dieldrine, heptachlore et heptaclororépoxyde : limite à 0.03 µg/l)  Total des pesticides devant être inférieur à 0.5 µg/l | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |
| Plomb         | La limite de qualité pour le paramètre plomb est de 10 μg/l depuis fin 2013, et était de 25 μg/l avant.                                                                                     | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                                                  |

| Paramètre            | Limite/Référence de qualité                               | Résultats du contrôle sanitaire                                                                                             |
|----------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Température          | La référence de qualité pour la température est de 25 °C. | 4 dépassements de cette référence de qualité ont été observés entre 2015 et 2018 sur 78 analyses soit 5% de dépassements.   |
| Conductivité         | Pas de limite ou de référence                             | Toutes les valeurs sont réglementaires.                                                                                     |
| TH et TAC            | Pas de limite ou de référence                             | Le TH moyen mesuré en sortie de réservoir sur les années 2015 et 2020 est de 21,4°F. Cela correspond à une eau plutôt dure. |
|                      |                                                           | Le TAC moyen mesuré en sortie de réservoir sur les années 2015 à 2020 est de 18.2°F.                                        |
| Autres<br>paramètres |                                                           | Aucun dépassement observé                                                                                                   |

## 6.6.6.3 <u>LATOUR BAS ELNE- SAINT CYPRIEN</u>

| Paramètre     | Limite/Référence de qualité                                                                                                                                                      | Résultats du contrôle sanitaire                                                                                                                                                                                       |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Arsenic       | La limite de qualité pour le paramètre arsenic est de 10 µg/l                                                                                                                    | Aucun dépassement de cette limite de qualité n' été observé sur la commune entre 2015 et 2020.                                                                                                                        |  |  |  |
| Baryum        | La limite de qualité pour le paramètre baryum est de 0.7 mg/l.                                                                                                                   | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                       |  |  |  |
| Radioactivité | Le paramètre permettant d'apprécier la radioactivité d'une eau est l'indicateur « Dose Totale Indicative » (DTI). La limite de qualité pour le paramètre DTI est de 0.1 mSy/an.  | Aucun dépassement de référence de qualité n'a été observé sur la commune entre 2015 et 2020.  A noter trois dépassements de la valeur guide pour le paramètre activité alpha globale sur 5 analyses les               |  |  |  |
|               |                                                                                                                                                                                  | 01/02/2016, 17/06/2019, 13/05/2020 à hauteur de 0,12, 0,13 et 0,12 Bq/L (valeur guide = 0,1 Bq/L).                                                                                                                    |  |  |  |
| Fer           | La référence de qualité pour le paramètre fer est 200 μg/l.                                                                                                                      | Aucun dépassement de cette référence de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                    |  |  |  |
| Nickel        | La limite de qualité pour le paramètre nickel est de 20 µg/l.                                                                                                                    | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                       |  |  |  |
| Nitrates      | La limite de qualité pour le paramètre nitrates est de 50 mg/l.                                                                                                                  | Aucun dépassement de cette limite de qualité n'a été observé sur la commune entre 2015 et 2020.                                                                                                                       |  |  |  |
| Pesticides    | Limite de qualité à 0.1 µg/l pour chaque pesticide (hors aldrine, dieldrine, heptachlore et heptaclororépoxyde : limite à 0.03 µg/l)  Total des pesticides devant être inférieur | 6 dépassements concernant le paramètre<br>Bentazone, un concernant le paramètre thirame et<br>un concernant les pesticides totaux ont été<br>observés sur l'UDI entre 2015 et 2020 sur un total<br>de 6 884 analyses. |  |  |  |
|               | à 0.5 µg/l                                                                                                                                                                       | 28/01/2020 Thirame 0,24 μg/L                                                                                                                                                                                          |  |  |  |
|               |                                                                                                                                                                                  | 28/01/2020 Total des pesticides analysés 0,24 µg/L                                                                                                                                                                    |  |  |  |
|               |                                                                                                                                                                                  | 02/09/2015 Bentazone 0,15 μg/L                                                                                                                                                                                        |  |  |  |
|               |                                                                                                                                                                                  | 07/10/2015 Bentazone 0,27 μg/L                                                                                                                                                                                        |  |  |  |
|               |                                                                                                                                                                                  | 04/11/2015 Bentazone 0,2 μg/L                                                                                                                                                                                         |  |  |  |
|               |                                                                                                                                                                                  | 06/01/2016 Bentazone 0,17 μg/L                                                                                                                                                                                        |  |  |  |
|               |                                                                                                                                                                                  | 01/03/2017 Bentazone 0,11 μg/L                                                                                                                                                                                        |  |  |  |
|               |                                                                                                                                                                                  | 14/09/2017 Bentazone 0,1 μg/L                                                                                                                                                                                         |  |  |  |

| Paramètre            | Limite/Référence de qualité                                                                             | Résultats du contrôle sanitaire                                                                                              |
|----------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Plomb                | La limite de qualité pour le paramètre plomb est de 10 µg/l depuis fin 2013, et était de 25 µg/l avant. | Un dépassement de cette limite de qualité a été observé sur la commune le 9 février 2017.                                    |
| Température          | La référence de qualité pour la température est de 25 °C.                                               | 46 dépassements de cette référence de qualité ont été observés entre 2015 et 2020 sur 358 analyses soit 14% de dépassements. |
| Conductivité         | Pas de limite ou de référence                                                                           | Toutes les valeurs sont réglementaires.                                                                                      |
| TH et TAC            | Pas de limite ou de référence                                                                           | Le TH moyen mesuré en sortie de réservoir sur les années 2015 et 2020 est de 19.4°F. Cela correspond à une eau plutôt dure.  |
|                      |                                                                                                         | Le TAC moyen mesuré en sortie de réservoir sur les années 2015 à 2020 est de 15.5°F.                                         |
| Autres<br>paramètres |                                                                                                         | Aucun dépassement observé                                                                                                    |

# 6.7 SYNTHESE

| Alénya                           |                                                                           |                                                       |  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Paramètres                       | Désordres observés                                                        | Aménagement à réaliser                                |  |  |  |  |
| Chlore                           | Taux insuffisant en sortie de réservoir et dans le réseau de distribution | Recalibrer le système de désinfection                 |  |  |  |  |
| Température                      | Dépassements limités de la référence de qualité                           | -                                                     |  |  |  |  |
|                                  | Théza                                                                     |                                                       |  |  |  |  |
| Paramètres                       | Désordres observés                                                        | Aménagement à réaliser                                |  |  |  |  |
| Chlore                           | Taux insuffisant en sortie de réservoir et dans le réseau de distribution | Recalibrer le système de désinfection                 |  |  |  |  |
| Température                      | Dépassements limités de la référence de qualité                           | -                                                     |  |  |  |  |
|                                  | Latour Bas Elne- Saint C                                                  | yprien                                                |  |  |  |  |
| Paramètres                       | Désordres observés                                                        | Aménagement à réaliser                                |  |  |  |  |
| Chlore                           | Taux insuffisant en sortie de réservoir et dans le réseau de distribution | Recalibrer le système de désinfection                 |  |  |  |  |
| Plomb/Equilibre calco-carbonique | Potentiel de dissolution très élevé<br>Eaux agressives                    | Mettre en place un système de<br>remise à l'équilibre |  |  |  |  |
| Température                      | Dépassements faibles de la référence de qualité                           | -                                                     |  |  |  |  |
| Pesticides                       | 6 dépassements de la limite de qualité sur<br>6 884 analyses              | Continuer le suivi régulier du paramètre              |  |  |  |  |

## 7 ANALYSE DU FONCTIONNEMENT DE SERVICE

## 7.1 ANALYSE DE LA PRODUCTION

Comme nous l'avons vu précédemment, la communauté de communes Sud Roussillon est organisée en 5 UDI alimentées par plusieurs forages :

- UDI Alénya
  - √ F2 Cami dels Ossous
- UDI Corneilla-del-Vercol
  - √ F1 Village Corneilla-Del-Vercol
- UDI Saint-Cyprien, Latour-Bas-Elne
  - √ F2 CAMP HORTES -CAM de la FOUN
  - √ F6 CAMP HORTES -CAM del FOUN
  - √ F5 CAMP HORTES -CAM de la FOUN
  - √ F8 CAMP HORTES -CAM de la FOUN (ancien F4bis)
  - √ F7 CAMP HORTES -CAM de la FOUN
  - √ SERRALONGUE OUEST -AL MOLY
  - √ F3bis FORAGE PROFOND -CAM de la FOUN
- UDI de Théza
  - √ Forage Village Théza

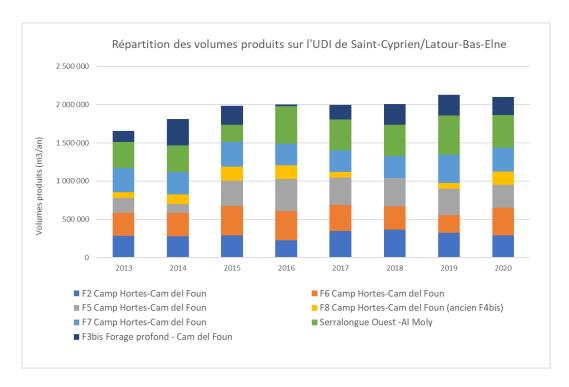
L'UDI de Montescot achète ses volumes d'eau traités à la Communauté de Communes Albères Côte Vermeille Illiberis.

#### 7.1.1 CAPACITES D'EXPLOITATION

Les capacités d'exploitation des forages ont été présentées précédemment. Pour rappel, les débits autorisés sont les suivants :

| Ressource et implantation                  | Document en vigueur                 | Débit horaire<br>autorisé | Débit journalier<br>autorisé | Débit annuel autorisé                      | Nappe       |
|--------------------------------------------|-------------------------------------|---------------------------|------------------------------|--------------------------------------------|-------------|
| UDI Alénya                                 |                                     |                           |                              |                                            |             |
| F2 Cami dels Ossous                        | DUP 26/09/2005                      | 60 m3/h                   | 1200 m3/j                    | 2 900 000 m3/an pour                       | Pliocène    |
| UDI Corneilla-Del-Vercol                   |                                     |                           |                              | l'ensemble des                             |             |
| F1 Village Corneilla-Del-Vercol            | Arrêté d'autorisation<br>26/11/2007 | 30 m3/h                   | 600 m3/j                     | ressources, 700 000<br>m3/an pour les deux | Pliocène    |
| UDI de Théza                               |                                     |                           |                              | forages de l'UDI dans le                   |             |
| Forage Village Théza                       | DUP 05/06/2002                      | 30 m3/h                   | 360 m3/j                     | pliocène (Serralongue                      | Pliocène    |
| UDI Saint-Cyprien, Latour-Bas-Elne         |                                     |                           |                              | Ouest et F3bis)                            |             |
| Serralongue Ouest -Al Moly                 | DUP 08/02/1998                      | 180 m3/h                  | 4 320 m3/j                   | Ensemble allant être                       | Pliocène    |
| F3bis Forage profond - Cam del Foun        | DUP 26/09/2005                      | 100 m3/h                  | 2000 m3/j                    | révisé à 1 243 215 m3/an                   | Pliocène    |
| F2 Camp Hortes-Cam del Foun                | DUP 26/09/2005                      | 120 m3/h                  | 2400 m3/j                    |                                            | Quaternaire |
| F6 Camp Hortes-Cam del Foun                | DUP 26/09/2005                      | 120 m3/h                  | 2400 m3/j                    |                                            | Quaternaire |
| F5 Camp Hortes-Cam del Foun                | DUP 26/09/2005                      | 60 m3/h                   | 1200 m3/j                    | 2 900 000 m3/an                            | Quaternaire |
| F8 Camp Hortes-Cam del Foun (ancien F4bis) | DUP 26/09/2005                      | 120 m3/h                  | 2400 m3/j                    |                                            | Quaternaire |
| F7 Camp Hortes-Cam del Foun                | DUP 26/09/2005                      | 120 m3/h                  | 2400 m3/j                    |                                            | Quaternaire |

# 7.1.2 ANALYSE DES DONNEES ANNUELLES


Les données annuelles de production présentées dans le tableau suivant proviennent des rapports annuels sur le prix et la qualité du service (RPQS).

|                                                 | Nappe<br>concernée | 2014         | 2015            | 2016      | 2017      | 2018      | 2019      | 2020      |
|-------------------------------------------------|--------------------|--------------|-----------------|-----------|-----------|-----------|-----------|-----------|
| UDI Alénya                                      |                    |              |                 |           |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | 253 342      | 232 843         | 246 902   | 269 308   | 254 672   | 238 875   | 234 405   |
| Dont F2 Cami dels Ossous                        | Pliocène           | 253 342      | 232 843         | 246 902   | 269 308   | 254 672   | 238 875   | 234 405   |
|                                                 |                    | UDI Cor      | neilla-Del-Verc | ol        |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | 137 318      | 143 092         | 139 462   | 138 700   | 143 485   | 159 349   | 177 974   |
| Dont F1 Village Corneilla-Del-Vercol            | Pliocène           | 137 318      | 143 092         | 139 462   | 138 700   | 143 485   | 159 349   | 177 974   |
|                                                 |                    | UDI Saint-Cy | prien, Latour-B | as-Ene    |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | 1 809 380    | 1 985 612       | 2 000 483 | 1 995 777 | 2 009 050 | 2 126 612 | 2 099 936 |
| Dont F2 Camp Hortes-Cam del Foun                | Quaternaire        | 281 938      | 292 903         | 228 493   | 348 906   | 364 438   | 326 360   | 293 083   |
| Dont F6 Camp Hortes-Cam del Foun                | Quaternaire        | 303 901      | 384 976         | 381 129   | 337 355   | 306 212   | 227 238   | 362 854   |
| Dont F5 Camp Hortes-Cam del Foun                | Quaternaire        | 110 987      | 327 772         | 417 074   | 357 915   | 368 920   | 345 726   | 298 039   |
| Dont F8 Camp Hortes-Cam del Foun (ancien F4bis) | Quaternaire        | 127 301      | 182 393         | 182 790   | 78 684    | 0         | 76 904    | 173 192   |
| Dont F7 Camp Hortes-Cam del Foun                | Quaternaire        | 293 986      | 322 026         | 278 005   | 278 005   | 288 305   | 370 952   | 312 760   |
| Dont Serralongue Ouest -Al Moly                 | Pliocène           | 345 621      | 229 147         | 493 115   | 406 399   | 407 464   | 510 101   | 423 413   |
| Dont F3bis Forage profond - Cam del Foun        | Pliocène           | 345 646      | 246 395         | 19 877    | 188 513   | 273 711   | 269 331   | 236 595   |
|                                                 |                    | UI           | DI de Théza     |           |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | 116 837      | 107 493         | 106 147   | 127 517   | 115 747   | 119 861   | 119 060   |
| Dont Forage Village Théza                       | Pliocène           | 116 837      | 107 493         | 106 147   | 127 517   | 115 747   | 119 861   | 119 060   |
|                                                 |                    | UDI d        | de Montescot    |           |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | -            | -               | -         | -         | -         | -         | -         |
|                                                 |                    |              | TOTAL           |           |           |           |           |           |
| Volumes produits totaux                         |                    | 2 316 877    | 2 469 040       | 2 492 994 | 2 531 302 | 2 522 954 | 2 644 697 | 2 631 375 |
|                                                 | appe pliocène      | 1 198 764    | 958 970         | 1 005 503 | 1 130 437 | 1 195 079 | 1 297 517 | 1 191 447 |
| Dont nap                                        | pe quaternaire     | 1 118 113    | 1 510 070       | 1 487 491 | 1 400 865 | 1 327 875 | 1 347 180 | 1 439 928 |

D'après le tableau précédent, les volumes produits augmentent globalement d'année en année pour les UDI de Saint-Cyprien-Latour/Bas-Elne, Corneilla-del-Vercol et de Théza. L'UDI d'Alénya a, elle, connu une diminution globale des volumes produits.

Le graphique ci-dessous présente la répartition des volumes produits (données RPQS) annuellement par les forages pour l'ensemble des UDI :





# 7.1.3 ANALYSE DES DONNEES MENSUELLES / HEBDOMADAIRES / JOURNALIERES ET COEFFICIENTS DE POINTE

Les volumes présentés dans les paragraphes suivants ont été calculés à partir de la télésurveillance sur l'été 2021 (télésurveillance mise en place en 2020).

#### 7.1.3.1 ANALYSE DES DONNEES MENSUELLES

Une analyse des volumes mensuels produits a été effectuée. Les résultats de cette analyse sont présentés dans ce paragraphe.

Les tableaux suivants synthétisent les volumes mensuels totaux produits sur chacune des UDI ainsi que les coefficients de pointe associés.

|           |            | Alenya |                                 | Corneilla-del-Vercol                        |                                                |                                 |  |
|-----------|------------|--------|---------------------------------|---------------------------------------------|------------------------------------------------|---------------------------------|--|
| Mois      | Production |        | Coefficients de pointe mensuels | Production<br>mensuelle totale<br>(m3/mois) | Production<br>moyenne<br>journalière<br>(m3/j) | Coefficients de pointe mensuels |  |
|           | 2021       | 2021   | 2021                            | 2021                                        | 2020                                           | 2021                            |  |
| Janvier   | 22 616     | 730    | 1,0                             | 16 428                                      | 530                                            | 1,1                             |  |
| Février   | 20 323     | 726    | 1,0                             | 15 313                                      | 547                                            | 1,2                             |  |
| Mars      | 26 259     | 847    | 1,2                             | 17 126                                      | 552                                            | 1,2                             |  |
| Avril     | 23 393     | 780    | 1,1                             | 12 746                                      | 425                                            | 0,9                             |  |
| Mai       | 24 270     | 783    | 1,1                             | 13 349                                      | 431                                            | 0,9                             |  |
| Juin      | 23 051     | 768    | 1,1                             | 14 966                                      | 499                                            | 1,1                             |  |
| Juillet   | 20 567     | 663    | 0,9                             | 15 273                                      | 493                                            | 1,1                             |  |
| Août      | 20 175     | 651    | 0,9                             | 14 466                                      | 467                                            | 1,0                             |  |
| Septembre | 18 112     | 604    | 0,8                             | 11 579                                      | 386                                            | 0,8                             |  |
| Octobre   | 19 936     | 643    | 0,9                             | 11 507                                      | 371                                            | 0,8                             |  |
| Novembre* | 19 749     | 658    | 0,9                             | 11 987                                      | 400                                            | 0,9                             |  |
| Décembre* | 21 995     | 710    | 1,0                             | 15 823                                      | 510                                            | 1,1                             |  |

<sup>\*</sup> Les mois de novembre et de décembre correspondent à la télésurveillance de l'année 2020

|           | St-Cyprien - Latour-Bas-Elne                |                                                |                                 |                                       | Théza |                                 |  |  |
|-----------|---------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------------|-------|---------------------------------|--|--|
| Mois      | Production<br>mensuelle totale<br>(m3/mois) | Production<br>moyenne<br>journalière<br>(m3/j) | Coefficients de pointe mensuels | Production moyenne journalière (m3/j) |       | Coefficients de pointe mensuels |  |  |
|           | 2021                                        | 2020                                           | 2021                            | 2021                                  | 2020  | 2021                            |  |  |
| Janvier   | 153 610                                     | 4 955                                          | 0,8                             | 11 062                                | 357   | 1,1                             |  |  |
| Février   | 143 226                                     | 5 115                                          | 0,8                             | 8 736                                 | 312   | 1,0                             |  |  |
| Mars      | 151 267                                     | 4 880                                          | 0,8                             | 9 618                                 | 310   | 1,0                             |  |  |
| Avril     | 149 765                                     | 4 992                                          | 0,8                             | 9 263                                 | 309   | 1,0                             |  |  |
| Mai       | 181 659                                     | 5 860                                          | 0,9                             | 9 622                                 | 310   | 1,0                             |  |  |
| Juin      | 218 859                                     | 7 295                                          | 1,1                             | 10 098                                | 337   | 1,1                             |  |  |
| Juillet   | 306 909                                     | 9 900                                          | 1,6                             | 10 455                                | 337   | 1,1                             |  |  |
| Août      | 324 905                                     | 10 481                                         | 1,6                             | 10 227                                | 330   | 1,0                             |  |  |
| Septembre | 209 476                                     | 6 983                                          | 1,1                             | 8 705                                 | 290   | 0,9                             |  |  |
| Octobre   | 179 254                                     | 5 782                                          | 0,9                             | 8 788                                 | 283   | 0,9                             |  |  |
| Novembre* | 154 026                                     | 5 134                                          | 0,8                             | 8 903                                 | 297   | 0,9                             |  |  |
| Décembre* | 147 186                                     | 4 748                                          | 0,7                             | 10 562                                | 341   | 1,1                             |  |  |

<sup>\*</sup> Les mois de novembre et de décembre correspondent à la télésurveillance de l'année 2020

Tableau 1 : Analyse des données de production mensuelles

La période de pointe se trouve au cours des mois de février/mars sur Alenya et Corneilla, de juillet/août sur Saint-Cyprien et de juillet/août décembre/janvier sur Théza.

Les volumes minimaux produits sont généralement produits l'hiver.

Le graphe suivant présente l'évolution mensuelle des volumes mis en distribution sur chaque UDI au cours de l'année 2021.

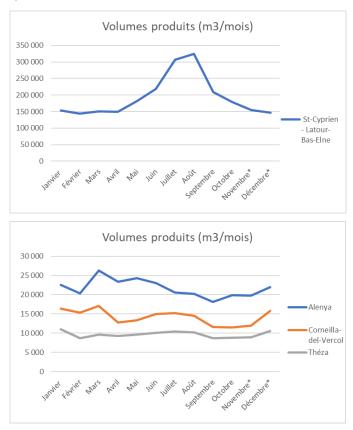



Figure 3 : Volumes mensuels produits chaque année par UDI

Il apparait que la pointe mensuelle est peu marquée sur les communes d'Alenya, Corneilladel-Vercol et Théza, contrairement à la commune de Saint-Cyprien.

## 7.1.3.2 ANALYSE DES DONNEES HEBDOMADAIRES

Le tableau suivant présente les volumes hebdomadaires de pointe ainsi que les coefficients associés.

| 2021                                              | Alenya      | Corneilla-del-<br>Vercol | St-Cyprien -<br>Latour-Bas-<br>Ene | Théza       |
|---------------------------------------------------|-------------|--------------------------|------------------------------------|-------------|
| Date de la semaine de pointe                      | Du 20 au 26 | Du 10 au 16              | Du 15 au 21                        | Du 10 au 16 |
| Date de la Serraine de pointe                     | mars        | juin                     | août                               | juin        |
| Volume de la semaine de pointe (m3/semaine)       | 7 245       | 4 011                    | 79 340                             | 2 600       |
| Volume jour moyen de la semaine de pointe (m3/j)  | 1 035       | 573                      | 11 334                             | 371         |
| Volume du jour moyen (m3/j)                       | 714         | 467                      | 6 357                              | 318         |
| Coefficient du jour moyen de la semaine de pointe | 1,5         | 1,2                      | 1,8                                | 1,2         |

Tableau 2 : Analyse des données de production hebdomadaires

Les coefficients de pointe hebdomadaire sont compris entre 1,2 et 1,8 suivant l'UDI considérée.

#### 7.1.3.3 <u>ANALYSE DES DONNEES JOURNALIERES</u>

Le tableau suivant présente les volumes journaliers de pointe observés ainsi que les coefficients de pointe correspondants.

| 2021                            | Alenya  | Corneilla-del-<br>Vercol | St-Cyprien -<br>Latour-Bas-<br>Elne | Théza   |
|---------------------------------|---------|--------------------------|-------------------------------------|---------|
| Date du jour de pointe          | 25-mars | 14-juin                  | 21-août                             | 12-juil |
| Volume du jour de pointe (m3/j) | 1 087   | 636                      | 12 268                              | 400     |
| Volume du jour moyen (m3/j)     | 714     | 467                      | 6 357                               | 318     |
| Coefficient du jour de pointe   | 1,5     | 1,4                      | 1,9                                 | 1,3     |

Tableau 3 : Analyse des données de production journalières

Les coefficients de pointe journalière sont compris entre 1,3 et 1,9 suivant l'UDI considérée.

#### **7.1.3.4 SYNTHESE**

Le tableau suivant synthétise l'ensemble des coefficients de pointe de mise en distribution précédemment déterminés.

| 2021                                              | Alenya | Corneilla-del-<br>Vercol | St-Cyprien -<br>Latour-Bas-<br>Ene | Théza | Montescot |
|---------------------------------------------------|--------|--------------------------|------------------------------------|-------|-----------|
| Coefficient du jour de pointe                     | 1,5    | 1,4                      | 1,9                                | 1,3   | 1,5       |
| Coefficient du jour moyen de la semaine de pointe | 1,5    | 1,2                      | 1,8                                | 1,2   | 1,5       |
| Coefficient du mois de pointe                     | 1,2    | 1,2                      | 1,6                                | 1,1   | 1,2       |

Tableau 4 : Synthèse des coefficients de pointe

## 7.2 VOLUMES MIS EN DISTRIBUTION

L'analyse des volumes mis en distribution annuels a été réalisée au travers des données du RPQS.

## 7.2.1 Analyse des données annuelles

Le tableau suivant présente l'évolution des débits mis en distribution sur l'ensemble des UDI de la communauté de communes Sud Roussillon à partir des données des RPQS.

|                             | 2014      | 2015        | 2016            | 2017      | 2018      | 2019      | 2020      |  |
|-----------------------------|-----------|-------------|-----------------|-----------|-----------|-----------|-----------|--|
| UDI Alénya                  |           |             |                 |           |           |           |           |  |
| Volumes mis en distribution | 256 042   | 232 843     | 247 697         | 270 823   | 257 403   | 240 208   | 236 842   |  |
| Dont Importations (m3/an)   | 2 700     | 0           | 795             | 1 515     | 2 731     | 1 333     | 2 437     |  |
| Dont Exportation (m3/an)    | 0         | 0           | 0               | 0         | 0         | 0         | 0         |  |
| Evolution interannuelle (%) | -         | -9%         | 6%              | 9%        | -5%       | -7%       | -1%       |  |
|                             |           | UDI Co      | rneilla-Del-Ver | col       |           |           |           |  |
| Volumes mis en distribution | 137 318   | 143 092     | 139 462         | 138 700   | 143 485   | 159 648   | 177 974   |  |
| Dont Importations (m3/an)   | 0         | 0           | 0               | 0         | 0         | 299       | 0         |  |
| Dont Exportation (m3/an)    | 0         | 0           | 0               | 0         | 0         | 0         | 0         |  |
| Evolution interannuelle (%) | -         | 4%          | -3%             | -1%       | 3%        | 11%       | 11%       |  |
|                             |           | UDI Saint-C | yprien, Latour- | Bas-⊟ne   |           |           |           |  |
| Volumes mis en distribution | 1 809 380 | 1 985 612   | 1 999 688       | 1 994 262 | 2 006 319 | 2 120 696 | 2 096 830 |  |
| Dont Importations (m3/an)   | 0         | 0           | 0               | 0         | 0         | 0         | 0         |  |
| Dont Exportation (m3/an)    | 0         | 0           | 795             | 1 515     | 2 731     | 5 916     | 3 106     |  |
| Evolution interannuelle (%) | -         | 10%         | 1%              | 0%        | 1%        | 6%        | -1%       |  |
|                             |           | ·           | JDI de Théza    |           |           |           |           |  |
| Volumes mis en distribution | 116 837   | 107 493     | 106 147         | 127 517   | 115 747   | 122 274   | 125 645   |  |
| Dont Importations (m3/an)   | 0         | 0           | 0               | 0         | 0         | 2 413     | 6 585     |  |
| Dont Exportation (m3/an)    | 0         | 0           | 0               | 0         | 0         | 0         | 0         |  |
| Evolution interannuelle (%) | -         | -8%         | -1%             | 20%       | -9%       | 6%        | 3%        |  |
| UDI de Montescot            |           |             |                 |           |           |           |           |  |
| Volumes mis en distribution | 160 803   | 126 848     | 128 578         | 137 981   | 107 319   | 122 404   | 111 768   |  |
| Dont Importations (m3/an)   | 160 803   | 126 848     | 128 578         | 137 981   | 107 319   | 122 404   | 111 768   |  |
| Dont Exportation (m3/an)    | 0         | 0           | 0               | 0         | 0         | 0         | 0         |  |
| Evolution interannuelle (%) | -         | -21%        | 1%              | 7%        | -22%      | 14%       | -9%       |  |

A noter que les importations et exportations, hors UDI de Montescot, correspondent à des échanges entre les différentes UDI via l'interconnexion.

Pour l'UDI d'Alenya, les volumes mis en distribution sont compris entre 230 000 et 270 000 m3/an.

Pour l'UDI de Corneilla-Del-Vercol, les volumes distribués ont augmenté au cours des 4 dernières années. Les Evolutions interannuelles sont comprises entre -3% et 11%.

Au niveau de l'UDI de Saint-Cyprien, des exportations d'eau ont eu lieu à partir de l'année 2016. Les volumes mis en distribution sont compris entre 1 800 000 et 2 130 000 m3/an.

Pour l'UDI de Théza, une augmentation des volumes mis en distribution est observée ces dernières années.

La totalité des volumes distribués sur l'UDI de Montescot sont importés.

# **7.2.2 A**NALYSE DES DONNEES MENSUELLES / HEBDOMADAIRES / JOURNALIERES ET COEFFICIENTS DE POINTE

Compte tenu des rendements de 100% sur les différentes adduction (cf ci-après), nous considèrerons les mêmes coefficients de pointe sur la distribution que sur la production.

Concernant la commune de Montescot (même typologie que Théza, Corneilla et Alenya), pour la situation future, nous considèrerons les mêmes coefficients de pointe que la commune d'Alenya par sécurité (coefficients les plus importants).

## 7.3 ANALYSE DE LA CONSOMMATION

#### 7.3.1 PRIX DE L'EAU

Les tarifs de facturation de l'ensemble des communes de la CC Sud Roussillon comprennent :

- Une part fixe annuelle d'abonnement donnant droit à la fourniture d'eau,
- Une part proportionnelle au mètre cube d'eau correspondant au volume d'eau réellement consommé et mesuré au compteur,
- Les taxes et redevances en vigueur, notamment pour la lutte contre la pollution.

Le tableau suivant présente une facture type consommateur particulier pour 120 m³ sur la

communauté de communes Sud Roussillon.

| Théza, Alenya, Montescot, Saint-Cyprien/Latour-Bas-Elne,<br>Corneilla-del-vercol | Prix unitaire (2018) | Quantité | Coût € HT |  |
|----------------------------------------------------------------------------------|----------------------|----------|-----------|--|
| Part de la collectivi                                                            | té                   |          |           |  |
| Part fixe annuelle Abonnement DN 15 mm, y compris Location du compteur           | 53 €                 | 1        | 53        |  |
| Part proportionnelle                                                             | 0,77€/m3             | 120      | 92,4      |  |
| Taxe et redevance                                                                | es                   |          |           |  |
| Redevance pour prélèvement sur la ressource en eau (Agence de l'eau)             | 0,1496 €/m3          | 120      | 17,952    |  |
| Redevance de pollution domestique (Agence de l'Eau)                              | 0,29 €/m3            | 120      | 34,8      |  |
| VNF Prélèvement :                                                                | 0,00 €/m 3           | 120      | 0         |  |
| TVA                                                                              | 5,5%                 | -        |           |  |
| Total (€)                                                                        |                      | 209,05   |           |  |
| Prix TTC au m3 (€)                                                               | 1,74                 |          |           |  |

### 7.3.2 NOMBRE D'ABONNES

L'évolution du nombre d'abonnés (source RPQS) est présentée dans le tableau suivant :

|                           | 2014                 | 2015  | 2016          | 2017  | 2018  | 2019  | 2020  |  |  |  |  |  |  |
|---------------------------|----------------------|-------|---------------|-------|-------|-------|-------|--|--|--|--|--|--|
| Alenya                    |                      |       |               |       |       |       |       |  |  |  |  |  |  |
| Nombre d'abonnés          | 1 495                | 1 532 | 1 558         | 1 619 | 1 653 | 1 724 | 1 677 |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 2%    | 2%            | 4%    | 2%    | 4%    | -3%   |  |  |  |  |  |  |
|                           | Corneilla-Del-Vercol |       |               |       |       |       |       |  |  |  |  |  |  |
| Nombre d'abonnés          | 922                  | 944   | 960           | 968   | 983   | 1 037 | 1 117 |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 2%    | 2%            | 1%    | 2%    | 5%    | 8%    |  |  |  |  |  |  |
|                           |                      |       | Montescot     |       |       |       |       |  |  |  |  |  |  |
| Nombre d'abonnés          | 740                  | 746   | 722           | 720   | 731   | 749   | 745   |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 1%    | -3%           | 0%    | 2%    | 2%    | -1%   |  |  |  |  |  |  |
|                           |                      |       | Saint-Cyprie  | n     |       |       |       |  |  |  |  |  |  |
| Nombre d'abonnés          | 5 889                | 5 995 | 5 986         | 6 230 | 6 285 | 6 410 | 6 514 |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 2%    | 0%            | 4%    | 1%    | 2%    | 2%    |  |  |  |  |  |  |
|                           |                      |       | Latour-Bas-El | ne    |       |       |       |  |  |  |  |  |  |
| Nombre d'abonnés          | 1 105                | 1 169 | 1 303         | 1 372 | 1 409 | 1 441 | 1 472 |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 6%    | 11%           | 5%    | 3%    | 2%    | 2%    |  |  |  |  |  |  |
| Theza                     |                      |       |               |       |       |       |       |  |  |  |  |  |  |
| Nombre d'abonnés          | 739                  | 785   | 793           | 806   | 822   | 854   | 849   |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 6%    | 1%            | 2%    | 2%    | 4%    | -1%   |  |  |  |  |  |  |

Le nombre d'abonnés sur la communauté de communes à tendance à augmenter sur l'ensemble des UDI, sauf en 2016 à Montescot.

Les ratio hab/abonnés en 2016 sont présentés dans le tableau suivant (sur la base des données de population INSEE) :

|                                      | Alenya | Corneilla-Del-Vercol | Montescot | Saint-Cyprien | Latour-Bas-Elne | Theza |
|--------------------------------------|--------|----------------------|-----------|---------------|-----------------|-------|
| Nombre d'abonnées (2016)             | 1 558  | 960                  | 722       | 5 986         | 1 303           | 793   |
| Nombre d'habitants permanents (2016) | 3 534  | 2 232                | 1 744     | 10 632        | 2 614           | 2 011 |
| Ratio hab/abonnées                   | 2,27   | 2,33                 | 2,42      | 1,78          | 2,01            | 2,54  |

### 7.3.3 PARC DE COMPTEURS

Le tableau ci-dessous présente le nombre de compteurs présents sur l'ensemble des communes en 2019 ainsi que le nombre de compteurs remplacés la même année, d'après les carnets métrologiques.

|                               | Alenya | Corneilla-Del-Vercol | Montescot | Saint-Cyprien | Latour-Bas-Elne | Theza |
|-------------------------------|--------|----------------------|-----------|---------------|-----------------|-------|
| Nombre de compteurs           | 1 753  | 1 120                | 775       | 6 923         | 1 473           | 867   |
| Nombre de compteurs remplacés | 3      | 1                    | 7         | 18            | 1               | 0     |
| Taux de compteurs remplacés   | 0,17%  | 0,09%                | 0,90%     | 0,26%         | 0,07%           | 0,00% |

La durée de vie d'un compteur est estimée entre 10 et 15 ans. En effet, le vieillissement des compteurs, que ce soit par l'usure ou la formation de dépôt, engendre des phénomènes de souscomptage de l'ordre de 5 à 20 % selon l'âge du compteur. Dans le calcul des volumes sous comptés, nous prendrons en compte les erreurs suivantes en fonction de l'âge des compteurs :

| Age (années)   | % d'erreur |
|----------------|------------|
| De 0 à 10 ans  | 0%         |
| De 10 à 30 ans | 7,5%       |
| De 30 à 45 ans | 15%        |
| Plus de 45 ans | 20%        |

La répartition de l'âge des compteurs de la commune est présentée dans le tableau suivant :

| Age (années)   | Nombre de compteurs  | Pourcentage |
|----------------|----------------------|-------------|
|                | Alenya               |             |
| De 0 à 10 ans  | 1 245                | 71%         |
| De 10 à 30 ans | 508                  | 29%         |
| De 30 à 45 ans | 0                    | 0%          |
| Plus de 45 ans | 0                    | 0%          |
|                | Corneilla-Del-Vercol |             |
| De 0 à 10 ans  | 819                  | 73%         |
| De 10 à 30 ans | 301                  | 27%         |
| De 30 à 45 ans | 0                    | 0%          |
| Plus de 45 ans | 0                    | 0%          |
|                | Montescot            |             |
| De 0 à 10 ans  | 584                  | 75%         |
| De 10 à 30 ans | 189                  | 24%         |
| De 30 à 45 ans | 2                    | 0%          |
| Plus de 45 ans | 0                    | 0%          |
|                | Saint-Cyprien        |             |
| De 0 à 10 ans  | 4 658                | 67%         |
| De 10 à 30 ans | 2 264                | 33%         |
| De 30 à 45 ans | 0                    | 0%          |
| Plus de 45 ans | 1                    | 0%          |
|                | Latour-Bas-Elne      |             |
| De 0 à 10 ans  | 1 205                | 82%         |
| De 10 à 30 ans | 268                  | 18%         |
| De 30 à 45 ans | 0                    | 0%          |
| Plus de 45 ans | 0                    | 0%          |
|                | Theza                |             |
| De 0 à 10 ans  | 779                  | 90%         |
| De 10 à 30 ans | 88                   | 10%         |
| De 30 à 45 ans | 0                    | 0%          |
| Plus de 45 ans | 0                    | 0%          |

### 7.3.4 VOLUMES CONSOMMES (FACTURES)

### 7.3.4.1 EVOLUTION DE LA CONSOMMATION

L'évolution de la consommation entre 2016 et 2020 sur le territoire de la communauté de communes

est présentée au sein du tableau ci-après.

|                           | 2016                 | 2017             | 2018      | 2019      | 2020      |  |  |  |  |  |  |  |
|---------------------------|----------------------|------------------|-----------|-----------|-----------|--|--|--|--|--|--|--|
|                           |                      | Alenya           |           |           |           |  |  |  |  |  |  |  |
| Consommation - Rôles      | 173 807              | 192 566          | 194 080   | 198 609   | 186 619   |  |  |  |  |  |  |  |
| Consommation - RPQS       | 174 074              | 194 570          | 199 392   | 206 120   | 203 105   |  |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 11%              | 1%        | 2%        | -6%       |  |  |  |  |  |  |  |
|                           | Corneilla-Del-Vercol |                  |           |           |           |  |  |  |  |  |  |  |
| Consommation - Rôles      | 109 359              | 113 668          | 107 216   | 104 875   | 125 385   |  |  |  |  |  |  |  |
| Consommation - RPQS       | 108 711              | 118 403          | 109 431   | 127 857   | 137 630   |  |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 4%               | -6%       | -2%       | 20%       |  |  |  |  |  |  |  |
|                           | Saint-C              | yprien-Latour-Ba | s-Elne    |           |           |  |  |  |  |  |  |  |
| Consommation - Rôles      | 1 465 400            | 1 571 401        | 1 475 066 | 1 639 315 | 1 574 950 |  |  |  |  |  |  |  |
| Consommation - RPQS       | 1 514 180            | 1 622 339        | 1 635 587 | 1 624 665 | 1 726 898 |  |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 7%               | -6%       | 11%       | -4%       |  |  |  |  |  |  |  |
|                           |                      | Theza            |           |           |           |  |  |  |  |  |  |  |
| Consommation - Rôles      | 82 782               | 80 562           | 85 712    | 95 216    | 97 790    |  |  |  |  |  |  |  |
| Consommation - RPQS       | 83 165               | 84 405           | 88 122    | 98 032    | 103 451   |  |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | -3%              | 6%        | 11%       | 3%        |  |  |  |  |  |  |  |
|                           |                      | Montescot        |           |           |           |  |  |  |  |  |  |  |
| Consommation - Rôles      | 76 220               | 84 950           | 75 096    | 79 029    | 75 787    |  |  |  |  |  |  |  |
| Consommation - RPQS       | 78 068               | 85 289           | 77 353    | 80 828    | 80 278    |  |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 11%              | -12%      | 5%        | -4%       |  |  |  |  |  |  |  |
|                           |                      | Total            |           |           |           |  |  |  |  |  |  |  |
| Consommation - Rôles      | 1 907 568            | 2 043 147        | 1 937 170 | 2 117 044 | 2 060 531 |  |  |  |  |  |  |  |
| Consommation - RPQS       | 1 958 198            | 2 105 006        | 2 109 885 | 2 137 502 | 2 251 362 |  |  |  |  |  |  |  |
| Evolution (N-(N-1))/(N-1) | -                    | 7%               | -5%       | 9%        | -3%       |  |  |  |  |  |  |  |

La consommation totale sur la communauté de communes Sud Roussillon a été comprise entre 1 960 000 m3/an et 2 250 000 m3/an (données RPQS).

Les différences observées entre les données rôles et les données RPQS semblent être liées à la période prise en compte pour l'établissement des rôles, ne correspondant pas à une année civile.

### 7.3.4.2 Consommations communales

Le tableau suivant présente l'évolution des consommations communales basée sur les données de l'exploitant.

|                                | 2016      | 2017              | 2018    | 2019    | 2020    |  |  |  |  |  |  |
|--------------------------------|-----------|-------------------|---------|---------|---------|--|--|--|--|--|--|
|                                |           | Alenya            |         |         |         |  |  |  |  |  |  |
| Consommation communale - Rôles | 464       | 4 058             | 7 150   | 9 612   | 10 489  |  |  |  |  |  |  |
|                                | Corne     | eilla-Del-Vercol  |         |         |         |  |  |  |  |  |  |
| Consommation communale - Rôles | 404       | 436               | 500     | 650     | 360     |  |  |  |  |  |  |
|                                | Saint-Cyp | rien-Latour-Bas-E | Ine     |         |         |  |  |  |  |  |  |
| Consommation communale - Rôles | 118 707   | 103 091           | 123 002 | 106 265 | 90 607  |  |  |  |  |  |  |
|                                |           | Theza             |         |         |         |  |  |  |  |  |  |
| Consommation communale - Rôles | 3 506     | 2 986             | 4 700   | 5 346   | 4 075   |  |  |  |  |  |  |
|                                | Montescot |                   |         |         |         |  |  |  |  |  |  |
| Consommation communale - Rôles | 0         | 0                 | 0       | 0       | 0       |  |  |  |  |  |  |
|                                | Total     |                   |         |         |         |  |  |  |  |  |  |
| Consommation communale - Rôles | 123 081   | 110 571           | 135 352 | 121 873 | 105 531 |  |  |  |  |  |  |

Tableau 5 : Consommations annuelles communales

Sur les 5 dernières années, les consommations communales étaient comprises entre 105 000 et 135 000 m3/an.

La liste des consommateurs communaux est répertoriée dans le tableau ci-dessous :

### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 75 / 118
Rapport d'étude Version c

|                                       |                   |                                  | 2016  | 2017     | 2018     | 2019     | 2020    |
|---------------------------------------|-------------------|----------------------------------|-------|----------|----------|----------|---------|
| ALENYA                                |                   |                                  | 2010  | 2017     | 2010     | 2019     | 2020    |
| OFFICE DEPARTEMENTAL H.L.M            | 0 Place           | ARAGO                            | 3     | 1        | 0        | 0        | 0       |
| INRA                                  | 0 Avenu           |                                  | 71    | 60       | 57       | 71       | 41      |
| INRA                                  | 0 Avenu           |                                  | 158   | 160      | 149      | 164      | 148     |
| INRA                                  | 0 Avenu           |                                  | 139   | 150      | 144      | 138      | 154     |
| INRA                                  | 0 Avenu           |                                  | 90    | 96       | 98       | 67       | 68      |
| Office Public des P.O.                | 0 Rue             | DU REART                         | 0     | 0        | 91       | 39       | 34      |
| OFFICE DES P.O                        | 0 Rue             | DU REART                         | 0     | 1        | 0        | 0        | 0       |
| OFFICE DES PO                         | 0 Rue             | DU REART                         | 0     | 0        | 0        | 0        | 0       |
| RESIDENCE LA LLEVANTINA               | 100 Avenu         |                                  | 0     | 3548     | 6578     | 9115     | 10038   |
| RESIDENCE LA LLEVANTINA               | 100 Avenu         |                                  | 0     | 17       | 4        | 1        | 6       |
| HLM DES P.O                           | 2 Rue             | Rosette BLANC                    | 0     | 0        | 24       | 16       | 0       |
| HLM DES P.O                           | 3 Rue             | Rosette BLANC                    | 0     | 0        | 0        | 0        | 0       |
| HLM DES P.O                           | 3 Rue             | Rosette BLANC                    | 1     | 0        | 0        | 1        | 0       |
| HLM DES P.O.                          | 3 Rue             | Rosette BLANC                    | 0     | 0        | 0        | 0        | 0       |
| OFFICE 66                             | 4 Rue             | Rosette BLANC                    | 2     | 25       | 5        | 0        | 0       |
| CORNEILLA                             | 4 I Nue           | Nosette BLANC                    |       | 23       |          |          |         |
| MAIRIE - ATELIER                      | 0 Rue             | DES ECOLES                       | 0     | 0        | 0        | 0        | 0       |
| MAIRIE - ATELIER<br>MAIRIE            | 10 Rue            | DU PIC NEOULOUS                  | 71    | 79       | 72       | 67       | 71      |
| OFFICE PUBLIC HLM DES PO              | 41 Rue            | DU TONKIN                        | 0     | 0        | 0        | 0        | 0       |
| OFFICE PUBLIC DES HLM                 | 41 Rue            | DU TONKIN                        | 0     | 0        | 0        | 0        | 0       |
| MAIRIE                                | 2 Rue             | FRANCOIS ARAGO                   | 79    | 84       | 177      | 174      | 174     |
| MAIRIE                                | 0 Rue             | MAIL DE L'ASPRE                  | 5     | 3        | 3        | 3        | 3       |
| MAIRIE                                | 0 Rue             | MAIL DE L'ASPRE                  | 23    | 39       | 43       | 48       | 45      |
| MAIRIE<br>MAIRIE                      | 0 Rue             |                                  | 23    | 1        | 0        |          | 45<br>0 |
|                                       |                   | MAIL DE L'ASPRE                  | 3     | 1<br>17  | 2        | 2        | _       |
| MAIRIE                                | 0 Rue             | MAIL DE L'ASPRE                  |       |          |          |          | 2       |
| MAIRIE                                | 0 Rue             | MAIL DE L'ASPRE                  | 0     | 1        | 1        | 4        | 11      |
| MAIRIE                                | 0 Rue             | MAIL DE L'ASPRE                  | 0     | 1        | 2        | 1 -      | 1       |
| MAIRIE MAIRIE de CORNEILLA DEL VERCOL | 0 Rue<br>12 Avenu | MAIL DE L'ASPRE  MARECHAL JOFFRE | 164   | 3<br>158 | 5<br>143 | 5<br>294 | 5<br>7  |
| MAIRIE de CORNEILLA DEL VERCOL MAIRIE |                   |                                  |       |          |          | _        | 41      |
|                                       | 28 Avenu          |                                  | 56    | 50       | 52       | 51       |         |
| COMMUNAUTE DE COMMUNES ILLIBERIS      | 4 Allée           | PAUL CLAUDEL                     | 0     | 0        | 0        | 0        | 0       |
| LATOUR-BAS-ELNE                       | 1 414             | DIELNIE                          | 400   |          | 40       | _        |         |
| APPARTEMENT LATOUR GENERAL            | 1 Avenu           |                                  | 430   | 0        | 10       | 0        | 0       |
| APPARTEMENT LATOUR ETAGE              | 1 Avenu           |                                  | 0     | 36       | 310      | 0        | 0       |
| MAIRIE                                | 0 Rue             | DU PARDAL                        | 92    | 129      | 64       | 65       | 70      |
| ST CYPRIEN                            | l olp             | ALDEDT CAMULO                    | 000   | 050      | 005      | 550      | 504     |
| SCE DEP INCENDIE SECOURS PO           | 0 Rue             | ALBERT CAMUS                     | 263   | 659      | 695      | 556      | 524     |
| MAIRIE                                | 0 HLM             | ANCIENNE GENDARMERIE             | 581   | 364      | 777      | 849      | 844     |
| OFFICE DEPARTEMENTAL HLM              |                   | ART EN BARRE                     | 8     | 8        | 78       | 8        | 18      |
| OFFICE DEPARTEMENTAL HLM              | 0 HLM             | ART EN BARRE                     | 8     | 7        | 6        | 7        | 56      |
| PORT                                  | 0 Quai            | ARTHUR RIMBAUD                   | 646   | 584      | 639      | 434      | 434     |
| COMMUNE DE SAINT CYPRIEN              | 0 Quai            | ARTHUR RIMBAUD                   | 650   | 215      | 135      | 252      | 149     |
| PORT                                  | 0 Quai            | ARTHUR RIMBAUD                   | 33    | 108      | 247      | 275      | 191     |
| AIRE CAMPING CAR                      | 0 Quai            | ARTHUR RIMBAUD                   | 588   | 595      | 613      | 538      | 453     |
| MAIRIE                                | 1 Rue             | BLAISE CENDRARS                  | 376   | 366      | 202      | 272      | 192     |
| EPIC OFFICE TOURISME                  | 0                 | BOSC D EN ROUGT                  | 104   | 120      | 50       | 50       | 50      |
| EPIC OFFICE TOURISME                  | 0                 | BOSC D EN ROUGT                  | 12150 | 13082    | 21241    | 21241    | 10000   |
| EPIC OFFICE TOURISME                  | 0                 | CAMPING BOSC D/ROUGT             | 29950 | 25240    | 48790    | 26801    | 20290   |
| EPIC OFFICE TOURISME                  | 0                 | CAMPING BOSC D/ROUGT             | 62    | 68       | 49       | 38       | 25      |
| EPIC OFFICE TOURISME                  | 0                 | CAMPING BOSC ROUGT               | 12572 | 13156    | 11459    | 14110    | 13239   |
| MAIRIE DE SAINT CYPRIEN               | 0                 | CAMPING LES MURIERS              | 1400  | 1232     | 1230     | 0        | 0       |
| OFFICE 66 OPH des PO                  | 0 Rue             | CHARLES PERRAULT                 | 3077  | 2544     | 31       | 189      | 297     |
| OFFICE 66 OPH des PO                  | 0 Rue             | CHARLES PERRAULT                 | 0     | 0        | 1        | 1        | 2       |
| PORT                                  | 0                 | COTE PONT TOURNANT               | 300   | 621      | 898      | 882      | 903     |
| PORT                                  | 0                 | COTE UDSIS                       | 3567  | 3545     | 5575     | 12732    | 4631    |
| OFFICE 66 OPH des PO                  | 0 Route           | D ALENYA                         | 6242  | 5405     | 0        | 1877     | 0       |
| OFFICE 66 OPH des PO                  | 0 Route           | D ALENYA                         | 0     | 0        | 0        | 0        | 1       |
| OFFICE 66 OPH des PO                  | 0 Route           | D ALENYA                         | 0     | 0        | 0        | 0        | 1       |

|                                  |   |              |                      | 2016       | 2017       | 2018       | 2019       | 2020        |
|----------------------------------|---|--------------|----------------------|------------|------------|------------|------------|-------------|
| ST CYPRIEN                       |   |              |                      |            |            |            |            |             |
| OFFICE 66 OPH des PO             | 0 | Route        | D ALENYA             | 0          | 0          | 0          | 0          | 1           |
| OFFICE 66 OPH des PO             | 0 | Route        | D ALENYA             | 0          | 0          | 0          | 0          | 1           |
| OFFICE 66 OPH des PO             | 0 | Route        | D ALENYA             | 0          | 0          | 0          | 0          | 1           |
| SYDETOM 66                       | 0 | Route        | D'ALENYA             | 25         | 29         | 19         | 30         | 25          |
| SYDETOM 66                       | 0 | Route        | D'ALENYA             | 722        | 407        | 457        | 400        | 481         |
| PORT                             | 0 | Rue          | DU DANEMARK          | 729        | 318        | 1502       | 705        | 633         |
| MAIRIE                           | 0 |              | HALL A LA MAREE      | 8          | 475        | 241        | 261        | 261         |
| GENDARMERIE NATIONALE            | 6 |              | HALL A LA MAREE      | 74         | 66         | 101        | 89         | 89          |
| PORT                             | 0 |              | HALL A LA MAREE      | 0          | 32         | 30         | 30         | 30          |
| PISCINE                          | 0 | Rue          | JULES LEMAITRE       | 0          | 0          | 0          | 0          | 0           |
| OFFICE 66 OPH des PO             |   | Rue          | JULES MICHELET       | 0          | 0          | 0          | 11         | 1           |
| GENDARMERIE NATIONALE            | 0 |              | LA PRADE             | 4351       | 3072       | 3104       | 3420       | 3765        |
| BA GENDARMERIE NATIONALE         | 0 |              | LA PRADE             | 398        | 212        | 1428       | 312        | 1364        |
| SCE DEP INCENDIE SECOURS PO      |   | Rue          | LAUTREAMONT          | 0          | 0          | 0          | 0          | 0           |
| COLLEGE ALICE ET JEAN OLIBO      |   |              | LE COLLEGE           | 523        | 426        | 488        | 463        | 430         |
| COLLEGE ALICE ET JEAN OLIBO      | _ |              | LE COLLEGE           | 0          | 0          | 0          | 0          | 0           |
| COLLEGE ALICE ET JEAN OLIBO      |   |              | LE COLLEGE           | 1481       | 1390       | 1441       | 993        | 1223        |
| PORT PORT                        | 0 | _00001111    | LES CAPELLANS        | 171        | 173        | 168        | 164        | 129         |
| PORT                             | 0 |              | LES CAPELLANS        | 131        | 116        | 98         | 175        | 83          |
| PORT                             | 0 |              | LES CAPELLANS        | 150        | 115        | 146        | 129        | 543         |
| PORT                             | 0 |              | LES CAPELLANS        | 92         | 105        | 75         | 88         | 87          |
| PORT                             | 0 |              | LES CAPELLANS        | 27         | 61         | 26         | 38         | 57          |
| PORT                             | 0 |              | LES CAPELLANS        | 263        | 280        | 290        | 393        | 401         |
| PORT                             | 0 |              | LES CAPELLANS        | 266        | 51         | 858        | 359        | 395         |
| PORT                             | 0 |              | LES CAPELLANS        | 178        | 1014       | 71         | 52         | 38          |
| PORT                             | 0 |              | LES CAPELLANS        | 175        | 191        | 152        | 182        | 148         |
| PORT                             | 0 |              | LES CAPELLANS        | 9          | 41         | 36         | 41         | 35          |
| PORT                             | 0 |              | LES CAPELLANS        | 42         | 48         | 38         | 24         | 40          |
|                                  | 0 |              | LES CAPELLANS        |            |            |            |            |             |
| PORT PONTONS PONTON QUALAMIRAUTE | 0 |              | LES CAPELLANS        | 138<br>0   | 197<br>0   | 328<br>0   | 809<br>0   | 1637<br>742 |
| PORT                             |   | Rue          | LUIGI BOCCHERINI     | 162        | 153        | 139        | 182        | 141         |
| OPH des PO OFFICE 66             |   | Rue          | MIRABEAU             | 4176       |            | 0          | 0          |             |
| OPH des PO OFFICE 66             |   | Rue          |                      | 0          | 3563<br>0  | 5          | 8          | 287<br>4    |
| DEPARTEMENT des PO               |   | Rue          | MIRABEAU<br>MIRABEAU | 0          | 0          | 62         | 58         | 38          |
| OPH des PO OFFICE 66             |   | Rue          | MIRABEAU             | 0          | 0          | 7          | 3          | 9           |
| PORT                             |   | Port         | NORD                 | 17062      | 11704      | 9920       |            | 15251       |
| PORT                             |   | Port         | NORD                 | 5240       | 0          | 0          | 5929<br>0  | 0           |
| PORT                             |   | Port         | QUAI H               | 514        | 440        | 441        | 436        | 457         |
| PORT                             |   | Port         | QUALI                | 650        | 710        | 602        | 678        | 482         |
| PORT                             |   | Port         | QUALI J              | 471        | 848        | 234        | 527        | 1239        |
| PORT                             |   | Port         | QUALK                | 231        | 442        | 284        | 746        | 674         |
|                                  | _ |              |                      |            |            |            |            |             |
| PORT                             |   | Port         | QUALK                | 401        | 431        | 403        | 361        | 302         |
| PORT PORT                        | _ | Port<br>Port | QUAI L<br>QUAI M     | 264<br>736 | 355<br>728 | 372<br>498 | 384<br>536 | 341<br>482  |
|                                  |   |              |                      |            |            |            |            |             |
| PORT                             |   | Port         | QUAI N<br>QUAI O     | 259        | 285        | 255        | 309        | 371         |
| PORT                             | _ | Port         |                      | 275        | 265        | 261        | 246        | 1492        |
| PORT                             | 0 |              | SANITAIRES           | 429        | 398        | 435        | 451        | 428         |
| EPIC OFFICE TOURISME             | 0 |              | SNACK BAR            | 267        | 454        | 181        | 0          | 0           |
| MAIRIE                           |   | Centre       | TENNIS               | 2672       | 3002       | 2966       | 3132       | 2014        |
| MAIRIE                           | 0 |              | TERRAIN ARC EN CIEL  | 270        | 604        | 256        | 370        | 360         |
| PORT                             | 0 |              | USINE A GLACE        | 400        | 0          | 0          | 0          | 0           |
| MAIRIE De Saint Cyprien          |   | Rue          | VALERY LARBAUD       | 0          | 0          | 0          | 0          | 0           |
| PORT                             |   | Port         | WC YACH CLUB         | 11         | 613        | 344        | 351        | 295         |
| PORT                             | 0 |              | ZONE TECHNIQUE PORT  | 1165       | 1193       | 1140       | 1213       | 930         |
| THEZA                            |   |              |                      | _          |            |            | _          | _           |
| OFFICE PUBLIC DE L HABITAT       |   | Rue          | DU PIC DE COSTABONNE | 815        | 882        | 1327       | 796        | 990         |
| OFFICE 66                        |   | Rue          | DU PIC DE COSTABONNE | 0          | 0          | 21         | 51         | 0           |
| OFFICE 66                        |   | Rue          | DU PIC DE COSTABONNE | 0          | 0          | 0          | 0          | 2           |
| OFFICE HLM 66                    |   | Rue          | DU PIC DE L' ORRY    | 4          | 1          | 3          | 4          | 2           |
| EPLEFPA de Perpignan Roussillon  |   | Route        | NATIONALE 114        | 2657       | 2068       | 3294       | 4464       | 3040        |
| EPLEFPA                          | 0 | Route        | NATIONALE 114        | 30         | 35         | 55         | 31         | 41          |

Figure 4 : Consommateurs communaux

### 7.3.4.3 CONSOMMATEURS NON DOMESTIQUES

Les volumes consommés par les consommateurs non domestiques sur la commune sont décrits dans le tableau suivant (source RPQS) :

### **ENTECH** Ingénieurs Conseils

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 77 / 118
Rapport d'étude Version c

|                                  | 2016      | 2017              | 2018      | 2019      | 2020      |  |  |  |  |  |
|----------------------------------|-----------|-------------------|-----------|-----------|-----------|--|--|--|--|--|
| Alenya                           |           |                   |           |           |           |  |  |  |  |  |
| Consommation comptabilisée       | 174 074   | 194 570           | 199 392   | 206 120   | 203 105   |  |  |  |  |  |
| Dont consommation domestique     | 166 951   | 186 604           | 192 330   | 198 620   | 196 805   |  |  |  |  |  |
| Dont consommation non domestique | 7 123     | 7 966             | 7 062     | 7 500     | 6 300     |  |  |  |  |  |
|                                  | Corn      | eilla-Del-Vercol  |           |           |           |  |  |  |  |  |
| Consommation comptabilisée       | 108 711   | 118 403           | 109 431   | 127 857   | 137 630   |  |  |  |  |  |
| Dont consommation domestique     | 104 813   | 113 390           | 105 041   | 116 239   | 134 541   |  |  |  |  |  |
| Dont consommation non domestique | 3 898     | 5 013             | 4 390     | 11 618    | 3 089     |  |  |  |  |  |
|                                  | Saint-Cyp | rien-Latour-Bas-E | lne       |           |           |  |  |  |  |  |
| Consommation comptabilisée       | 1 514 180 | 1 622 339         | 1 515 864 | 1 624 665 | 1 726 898 |  |  |  |  |  |
| Dont consommation domestique     | 1 401 137 | 1 527 563         | 1 396 141 | 1 546 791 | 1 608 116 |  |  |  |  |  |
| Dont consommation non domestique | 113 043   | 94 776            | 119 723   | 77 874    | 118 782   |  |  |  |  |  |
|                                  |           | Theza             |           |           |           |  |  |  |  |  |
| Consommation comptabilisée       | 83 165    | 84 405            | 88 122    | 98 032    | 103 451   |  |  |  |  |  |
| Dont consommation domestique     | 80 605    | 79 882            | 85 233    | 94 702    | 100 244   |  |  |  |  |  |
| Dont consommation non domestique | 2 560     | 4 523             | 2 889     | 3 330     | 3 207     |  |  |  |  |  |
|                                  |           | Montescot         |           |           |           |  |  |  |  |  |
| Consommation comptabilisée       | 78 068    | 85 289            | 77 353    | 80 828    | 80 278    |  |  |  |  |  |
| Dont consommation domestique     | 74 791    | 82 554            | 74 114    | 78 189    | 78 211    |  |  |  |  |  |
| Dont consommation non domestique | 3 277     | 2 735             | 3 239     | 2 639     | 2 067     |  |  |  |  |  |
|                                  |           | Total             |           |           |           |  |  |  |  |  |
| Consommation comptabilisée       | 1 958 198 | 2 105 006         | 1 990 162 | 2 137 502 | 2 251 362 |  |  |  |  |  |
| Dont consommation domestique     | 1 828 297 | 1 989 993         | 1 852 859 | 2 034 541 | 2 117 917 |  |  |  |  |  |
| Dont consommation non domestique | 129 901   | 115 013           | 137 303   | 102 961   | 133 445   |  |  |  |  |  |

Tableau 6 : Volumes consommés par les gros consommateurs

Les consommations communales ont été considérés comme des consommations domestiques (non précisé au sein des RPQS).

#### 7.3.4.4 ABONNES PARTICULIERS - CONSOMMATION DES PARTICULIERS

Les consommations domestiques correspondent aux volumes totaux facturés auxquels on retranche les volumes des abonnés non domestiques et les volumes liés aux consommations communales. Le tableau suivant présente les consommations des particuliers :

| Ratios de consommation                | 2016       | 2017             | 2018      | 2019      | 2020      |
|---------------------------------------|------------|------------------|-----------|-----------|-----------|
|                                       |            | Alenya           |           |           |           |
| Consommation des particuliers (m3/an) | 166 487    | 182 546          | 185 180   | 189 008   | 186 316   |
| Population permanente                 | 3 534      | 3 601            | 3 519     | 3 593     | 3 660     |
| Population saisonnière                | 2 036      | 2 036            | 2 036     | 2 036     | 2 036     |
| Population moyenne*                   | 3 873      | 3 940            | 3 858     | 3 932     | 3 999     |
| Ratio de consommation (l/j/hab)       | 118        | 127              | 131       | 132       | 128       |
|                                       | Corn       | eilla-Del-Vercol |           |           |           |
| Consommation des particuliers (m3/an) | 104 409    | 112 954          | 104 541   | 115 589   | 134 181   |
| Population permanente                 | 2 232      | 2 293            | 2 238     | 2 259     | 2 321     |
| Population saisonnière                | 168        | 168              | 168       | 168       | 168       |
| Population moyenne*                   | 2 260      | 2 321            | 2 266     | 2 287     | 2 349     |
| Ratio de consommation (l/j/hab)       | 127        | 133              | 126       | 138       | 157       |
|                                       | Saint-Cypr | ien-Latour-Bas   | -Ene      |           |           |
| Consommation des particuliers (m3/an) | 1 282 430  | 1 424 472        | 1 273 139 | 1 440 526 | 1 517 509 |
| Population permanente                 | 13 246     | 13 308           | 13 062    | 13 441    | 13 515    |
| Population saisonnière                | 57 866     | 57 866           | 57 866    | 57 866    | 57 866    |
| Population moyenne*                   | 22 890     | 22 952           | 22 706    | 23 085    | 23 159    |
| Ratio de consommation (l/j/hab)       | 153        | 170              | 154       | 171       | 180       |
|                                       |            | Theza            |           |           |           |
| Consommation des particuliers (m3/an) | 77 099     | 76 896           | 80 533    | 89 356    | 96 169    |
| Population permanente                 | 2 011      | 2 040            | 2 012     | 20 113    | 2 137     |
| Population saisonnière                | 140        | 140              | 140       | 140       | 140       |
| Population moyenne*                   | 2 034      | 2 063            | 2 035     | 20 136    | 2 160     |
| Ratio de consommation (l/j/hab)       | 104        | 102              | 108       | 12        | 122       |
|                                       | 1          | Montescot        |           |           |           |
| Consommation des particuliers (m3/an) | 74 791     | 82 554           | 74 114    | 78 189    | 78 211    |
| Population permanente                 | 1 744      | 1 712            | 1 784     | 1 776     | 1 751     |
| Population saisonnière                | 168        | 168              | 168       | 168       | 168       |
| Population moyenne*                   | 1 772      | 1 740            | 1 812     | 1 804     | 1 779     |
| Ratio de consommation (l/j/hab)       | 116        | 130              | 112       | 119       | 120       |

<sup>\*</sup>la population moyenne est calculée en prenant l'hypothèse que la population saisonnière est présente sur les communes 2 mois par an.

Tableau 7 : Ratios de consommation

### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 78 / 118 Rapport d'étude Version c

Il est à noter que les données de population utilisées dans le calcul des ratios de consommation sont les données INSEE de 2017 et étendues aux années suivantes.

Les ratios de consommation moyens sont variables en fonction des UDI, allant en moyenne de 110 l/j/habitant sur l'UDI de Théza à 166 l/j/habitant sur l'UDI de Saint-Cyrpien-Latour-Bas-Elne.

### 7.3.4.5 CONSOMMATION NON FACTUREE

La consommation non facturée est de deux ordres (source RPQS) :

- Volumes consommés sans comptage : ces volumes estimés sont ceux consommés par des usagers connus disposant d'une autorisation d'usage. Cela peut notamment concerner les volumes liés aux essais incendie (poteaux et bornes), aux manœuvres des pompiers, à l'arrosage de certains espaces verts, à certaines fontaines, aux lavages de voiries ou bien encore aux chasses d'eau sur le réseau d'assainissement.
- Volumes de service du réseau : ces volumes estimés sont ceux liés à l'exploitation du réseau de distribution d'eau. Cela peut notamment concerner les volumes liés au nettoyage des réservoirs, aux purges / lavage / désinfection de canalisation ou de branchements ou bien encore à la présence d'analyseurs de chlore.

|                                    | 2014   | 2015            | 2016            | 2017   | 2018   | 2019   | 2020   |
|------------------------------------|--------|-----------------|-----------------|--------|--------|--------|--------|
|                                    |        | UDI             | Alenya          |        |        |        |        |
| Consommation sans comptage (m3/an) | 789    | 30              | 320             | 30     | 150    | 0      | 0      |
| Volume de service (m3/an)          | 2 536  | 2 406           | 2 423           | 2 536  | 2 423  | 1 955  | 1 955  |
| Volume total non facturé (m3/an)   | 3 325  | 2 436           | 2 743           | 2 566  | 2 573  | 1 955  | 1 955  |
|                                    |        | UDI Corne       | illa-Del-Vercol |        |        |        |        |
| Consommation sans comptage (m3/an) | 3 500  | 3 300           | 3 300           | 2 750  | 3 100  | 0      | 0      |
| Volume de service (m3/an)          | 1 118  | 1 818           | 1 821           | 1 821  | 1 961  | 1 821  | 1 821  |
| Volume total non facturé (m3/an)   | 4 618  | 5 118           | 5 121           | 4 571  | 5 061  | 1 821  | 1 821  |
|                                    |        | UDI Saint-Cypri | en/ Latour-Bas  | -Elne  |        |        |        |
| Consommation sans comptage (m3/an) | 22 073 | 7 690           | 12 654          | 11 690 | 11 450 | 0      | 0      |
| Volume de service (m3/an)          | 10 077 | 10 255          | 10 147          | 10 147 | 10 147 | 10 147 | 10 147 |
| Volume total non facturé (m3/an)   | 32 150 | 17 945          | 22 801          | 21 837 | 21 597 | 10 147 | 10 147 |
|                                    |        | UD              | l Theza         |        |        |        |        |
| Consommation sans comptage (m3/an) | 680    | 710             | 400             | 150    | 150    | 0      | 0      |
| Volume de service (m3/an)          | 951    | 1651            | 1705            | 1705   | 1705   | 1705   | 1705   |
| Volume total non facturé (m3/an)   | 1 631  | 2 361           | 2 105           | 1 855  | 1 855  | 1 705  | 1 705  |
|                                    |        | UDI M           | ontescot        |        |        |        |        |
| Consommation sans comptage (m3/an) | 680    | 420             | 270             | 270    | 270    | 719    | 200    |
| Volume de service (m3/an)          | 705    | 705             | 719             | 719    | 719    | 3 628  | 719    |
| Volume total non facturé (m3/an)   | 1 385  | 1 125           | 989             | 989    | 989    | 4 347  | 919    |
|                                    |        | Т               | OTAL            |        |        |        |        |
| Consommation sans comptage (m3/an) | 27 722 | 12 150          | 16 944          | 14 890 | 15 120 | 719    | 200    |
| Volume de service (m3/an)          | 15 387 | 16 835          | 16 815          | 16 928 | 16 955 | 19 256 | 16 347 |
| Volume total non facturé (m3/an)   | 43 109 | 28 985          | 33 759          | 31 818 | 32 075 | 19 975 | 16 547 |

Figure 5 : Tableau répertoriant les différents volumes non comptabilisés (données RPQS)

### 7.4 INDICES DE PERFORMANCES

### 7.4.1 GENERALITES

### 7.4.1.1 LE RENDEMENT

Il existe plusieurs types de rendement :

• Rendement primaire :

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 79 / 118
Rapport d'étude Version c

Ce rendement, le plus simple qu'il soit, est le rapport de la consommation comptabilisée/facturée sur le volume mis en distribution. Plus que sa valeur absolue, c'est essentiellement son évolution qu'il est intéressant d'analyser.

### • Rendement net:

Ce rendement est le rapport de la consommation totale sur le volume mis en distribution. Le volume de consommation totale est la somme des consommations comptabilisées et non comptabilisées connues (eaux de services, défense incendie, ...). Néanmoins, il est à prendre avec précautions, puisqu'il résulte en partie de volumes estimés sur lesquels une part d'incertitude persiste.

### • Rendement hydraulique du service (Rh):

Ce rendement est le rapport de l'ensemble des volumes consommés (volumes comptabilisés et non comptabilisés) sur les volumes produits (somme des volumes prélevés et volumes achetés).

Les premiers rendements rendent compte du rendement du réseau de distribution d'eau potable, alors que le rendement hydraulique rend compte de l'état du réseau d'alimentation en eau potable global, en tenant compte des pertes sur l'adduction.

| Catégorie | État du réseau |
|-----------|----------------|
| < 60 %    | Mauvais        |
| 60 à 70%  | Médiocre       |
| 70 à 75 % | Moyen          |
| 75 à 80 % | Bon            |
| 80 à 85 % | Très bon       |
| > 85 %    | Excellent      |

### 7.4.1.2 L'INDICE LINEAIRE DE PERTES

En fonction de l'indice linéaire de consommation du réseau AEP, la valeur de l'indice linéaire de pertes permet aussi d'évaluer l'état du réseau en se basant sur les critères définis par l'agence de l'eau Rhône Méditerranée Corse suivants :

| Catégorie de réseau<br>ILC (m3/j/km) | Rural<br>ILC <10 | Sem i-rural<br>10 < ILC < 30 | Urbain<br>ILC > 30 |
|--------------------------------------|------------------|------------------------------|--------------------|
| ILP (m³/j/km): bon                   | ILP < 1,5        | ILP<3                        | ILP<7              |
| ILP (m³/j/km) : acceptable           | 1,5 < ILP < 2,5  | 3 < ILP < 5                  | 7 < ILP < 10       |
| ILP (m³/j/km) : médiocre             | 2,5 < ILP < 4    | 5 < ILP < 8                  | 10 < ILP < 15      |
| ILP (m³/j/km): mauvais               | ILP>4            | ILP>8                        | ILP > 15           |

### 7.4.2 LES INDICES ACTUELS DE PERFORMANCE DES INFRASTRUCTURES

Les volumes calculés présentés dans les paragraphes suivants ont été calculés grâce aux RPQS.

### 7.4.2.1 INDICES DE PERFORMANCE DU RESEAU D'ADDUCTION

Les rendements des réseaux d'adduction calculés à l'aide des données du RPQS sont le suivant :

| Réseau adduction                    | 2014       | 2015           | 2016              | 2017      | 2018      | 2019      | 2020      |  |  |
|-------------------------------------|------------|----------------|-------------------|-----------|-----------|-----------|-----------|--|--|
|                                     | UDI Alenya |                |                   |           |           |           |           |  |  |
| Volumes produit (m3/an)             | 253 342    | 232 843        | 246 902           | 269 308   | 254 672   | 238 875   | 234 405   |  |  |
| Volumes mis en distribution (m3/an) | 256 042    | 232 843        | 247 697           | 270 823   | 257 403   | 240 208   | 236 842   |  |  |
|                                     |            |                |                   |           |           |           |           |  |  |
| Rendement net du réseau             | 100%       | 100%           | 100%              | 100%      | 100%      | 100%      | 100%      |  |  |
|                                     |            | UDI Corne      | eilla-Del-Vercol  |           |           |           |           |  |  |
| Volumes produit (m3/an)             | 137 318    | 143 092        | 139 462           | 138 700   | 143 485   | 159 349   | 177 974   |  |  |
| Volumes mis en distribution (m3/an) | 137 318    | 143 092        | 139 462           | 138 700   | 143 485   | 159 648   | 177 974   |  |  |
|                                     |            |                |                   |           |           |           |           |  |  |
| Rendement net du réseau             | 100%       | 100%           | 100%              | 100%      | 100%      | 100%      | 100%      |  |  |
|                                     |            | UDI Saint-Cypr | ien/ Latour-Bas-E | Elne      |           |           |           |  |  |
| Volumes produit (m3/an)             | 1 809 380  | 1 985 612      | 2 000 483         | 1 995 777 | 2 009 050 | 2 126 612 | 2 099 936 |  |  |
| Volumes mis en distribution (m3/an) | 1 809 380  | 1 985 612      | 1 999 688         | 1 994 262 | 2 006 319 | 2 120 696 | 2 096 830 |  |  |
|                                     |            |                |                   |           |           |           |           |  |  |
| Rendement net du réseau             | 100%       | 100%           | 100%              | 100%      | 100%      | 100%      | 100%      |  |  |
|                                     | UDI Theza  |                |                   |           |           |           |           |  |  |
| Volumes produit (m3/an)             | 116 837    | 107 493        | 106 147           | 127 517   | 115 747   | 119 861   | 119 060   |  |  |
| Volumes mis en distribution (m3/an) | 116 837    | 107 493        | 106 147           | 127 517   | 115 747   | 122 274   | 125 645   |  |  |
|                                     |            | •              | •                 | •         | •         |           |           |  |  |
| Rendement net du réseau             | 100%       | 100%           | 100%              | 100%      | 100%      | 100%      | 100%      |  |  |

Nous retiendrons donc la valeur de 100% de rendement au niveau du réseau d'adduction.

### 7.4.2.2 INDICES DE PERFORMANCE DU RESEAU DE DISTRIBUTION

Le tableau ci-après présente le rendement du réseau de distribution ainsi que les indices linéaires de consommation et de pertes calculés grâce aux données du RPQS.

Il est à noter que les volumes consommés autorisés correspondent aux volumes comptabilisés augmentés des volumes consommateurs sans comptage et des volumes de service du réseau.

|                                         | 2014      | 2015      | 2016            | 2017      | 2018      | 2019      | 2020      |
|-----------------------------------------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|
|                                         |           | U         | DI Alenya       |           |           |           |           |
| Volumes produit (m3/an)                 | 253 342   | 232 843   | 246 902         | 269 308   | 254 672   | 238 875   | 234 405   |
| Volumes mis en distribution (m3/an)     | 256 042   | 232 843   | 247 697         | 270 823   | 257 403   | 240 208   | 236 842   |
| Volumes consommés (m3/an)               | 168 628   | 162 820   | 174 074         | 194 570   | 199 392   | 206 120   | 203 105   |
| Volumes consommés autorisés (m3/an)     | 171 953   | 165 256   | 176 817         | 197 136   | 201 965   | 208 075   | 205 060   |
| Volumes exportés (m3/an)                | 0         | 0         | 0               | 0         | 0         | 0         | 0         |
| Volumes importés (interconnexion) m3/an | 2 700     | 0         | 795             | 1 515     | 2 731     | 1 333     | 2 437     |
| Consommation sans comptage (m3/an)      | 789       | 30        | 320             | 30        | 150       | 0         | 0         |
| Volume de service (m3/an)               | 2536      | 2406      | 2423            | 2536      | 2423      | 1955      | 1955      |
| Linéaire du réseau d'eau potable (km)   | 22        | 22        | 22              | 22        | 22        | 24        | 24        |
| Rendement primaire                      | 66%       | 70%       | 70%             | 72%       | 77%       | 86%       | 86%       |
| Rendement net du réseau                 | 67%       | 71%       | 71%             | 73%       | 78%       | 87%       | 87%       |
|                                         | 21        | 21        | 22              | 25        | 25        | 23        | 23        |
| ILC (m3/j/km)                           |           |           |                 |           |           | -         |           |
| ILP (m3/j/km)                           | 10,5      | 8,4       | 8,8             | 9,2       | 6,9       | 3,6       | 3,6       |
| Rendement objectif décret               | 69%       | 69%       | 69%             | 70%       | 70%       | 85%       | 85%       |
|                                         |           |           | eilla-Del-Verco |           |           |           | l         |
| Volumes produit (m3/an)                 | 137 318   | 143 092   | 139 462         | 138 700   | 143 485   | 159 349   | 177 974   |
| Volumes mis en distribution (m3/an)     | 137 318   | 143 092   | 139 462         | 138 700   | 143 485   | 159 648   | 177 974   |
| Volumes consommés (m3/an)               | 105 765   | 108 345   | 108 711         | 118 403   | 109 431   | 127 857   | 137 630   |
| Volumes consommés autorisés (m3/an)     | 110 383   | 113 463   | 113 832         | 122 974   | 114 492   | 129 678   | 139 451   |
| Volumes exportés (m3/an)                | 0         | 0         | 0               | 0         | 0         | 0         | 5 916     |
| Volumes importés (interconnexion) m3/an | 0         | 0         | 0               | 0         | 0         | 299       | 0         |
| Consommation sans comptage (m3/an)      | 3 500     | 3 300     | 3 300           | 2 750     | 3 100     | 0         | 0         |
| Volume de service (m3/an)               | 1 118     | 1 818     | 1 821           | 1 821     | 1 961     | 1 821     | 1 821     |
| Linéaire du réseau d'eau potable (km)   | 12        | 12        | 12              | 13        | 13        | 14        | 14        |
| Rendement primaire                      | 77%       | 76%       | 78%             | 85%       | 76%       | 80%       | 77%       |
| Rendement net du réseau                 | 80%       | 79%       | 82%             | 89%       | 80%       | 81%       | 78%       |
| ILC (m3/j/km)                           | 25        | 26        | 26              | 26        | 24        | 26        | 28        |
| ILP (m3/j/km)                           | 6,1       | 6,8       | 5,9             | 3,3       | 6,1       | 5,9       | 7,6       |
| Rendement objectif décret               | 70%       | 70%       | 70%             | 85%       | 70%       | 70%       | 71%       |
|                                         |           |           | rien/ Latour-Ba |           |           |           |           |
| Volumes produit (m3/an)                 | 1 809 380 | 1 985 612 | 2 000 483       | 1 995 777 | 2 009 050 | 2 126 612 | 2 099 936 |
| Volumes mis en distribution (m3/an)     | 1 809 380 | 1 985 612 | 1 999 688       | 1 994 262 | 2 006 319 | 2 120 696 | 2 096 830 |
| Volumes consommés (m3/an)               | 1 536 541 | 1 443 176 | 1 514 180       | 1 622 339 | 1 635 587 | 1 624 665 | 1 726 898 |
| Volumes consommés autorisés (m3/an)     | 1 568 691 | 1 461 121 | 1 536 981       | 1 644 176 | 1 657 184 | 1 634 812 | 1 737 045 |
| Volumes exportés (m3/an)                | 0         | 0         | 795             | 1 515     | 2 731     | 7 423     | 3 106     |
| Volumes importés (interconnexion) m3/an | 0         | 0         | 0               | 0         | 0         | 0         | 0         |
| Consommation sans comptage (m3/an)      | 22 073    | 7 690     | 12 654          | 11 690    | 11 450    | 0         | 0         |
| Volume de service (m3/an)               | 10 077    | 10 255    | 10 147          | 10 147    | 10 147    | 10 147    | 10 147    |
| Linéaire du réseau d'eau potable (km)   | 142       | 141       | 142             | 142       | 142       | 143       | 143       |
|                                         |           |           |                 |           |           |           |           |
| Rendement primaire                      | 85%       | 73%       | 76%             | 81%       | 82%       | 77%       | 82%       |
| Rendement net du réseau                 | 87%       | 74%       | 77%             | 82%       | 83%       | 77%       | 83%       |
| ILC (m3/j/km)                           | 30        | 28        | 30              | 32        | 32        | 31        | 33        |
| ILP (m3/j/km)                           | 4,6       | 10,2      | 8,9             | 6,8       | 6,7       | 9,3       | 6,9       |
| Rendement objectif décret               | 85%       | 71%       | 71%             | 85%       | 71%       | 71%       | 72%       |

|                                         | 2014    | 2015    | 2016      | 2017    | 2018    | 2019    | 2020    |
|-----------------------------------------|---------|---------|-----------|---------|---------|---------|---------|
|                                         |         | U       | DI Theza  |         |         |         |         |
| Volumes produit (m3/an)                 | 116 837 | 107 493 | 106 147   | 127 517 | 115 747 | 119 861 | 119 060 |
| Volumes mis en distribution (m3/an)     | 116 837 | 107 493 | 106 147   | 127 517 | 115 747 | 122 274 | 125 645 |
| Volumes consommés (m3/an)               | 78 281  | 80 513  | 83 165    | 84 405  | 88 122  | 98 032  | 103 451 |
| Volumes consommés autorisés (m3/an)     | 79 912  | 82 874  | 82 270    | 86 260  | 89 977  | 99 737  | 105 156 |
| Volumes exportés (m3/an)                | 0       | 0       | 0         | 0       | 0       | 0       | 0       |
| Volumes importés (interconnexion) m3/an | 0       | 0       | 0         | 0       | 0       | 2 413   | 6 585   |
| Consommation sans comptage (m3/an)      | 680     | 710     | 400       | 150     | 150     | 0       | 0       |
| Volume de service (m3/an)               | 951     | 1651    | 1705      | 1705    | 1705    | 1705    | 1705    |
| Linéaire du réseau d'eau potable (km)   | 13      | 13      | 13        | 14      | 14      | 14      | 14      |
| Rendement primaire                      | 67%     | 75%     | 78%       | 66%     | 76%     | 80%     | 82%     |
| Rendement net du réseau                 | 68%     | 77%     | 78%       | 68%     | 78%     | 82%     | 84%     |
| ILC (m3/j/km)                           | 18      | 18      | 18        | 17      | 18      | 19      | 20      |
| ILP (m3/j/km)                           | 8,1     | 5,4     | 5,2       | 8,3     | 5,2     | 4,3     | 3,9     |
| Rendement objectif décret               | 69%     | 69%     | 69%       | 68%     | 69%     | 69%     | 69%     |
|                                         |         | UDI     | Montescot |         |         |         |         |
| Volumes produit (m3/an)                 | 0       | 0       | 0         | 0       | 0       | 0       | 0       |
| Volumes mis en distribution (m3/an)     | 160 803 | 126 848 | 128 578   | 137 981 | 107 319 | 122 404 | 111 768 |
| Volumes consommés (m3/an)               | 80 698  | 78 560  | 78 068    | 85 289  | 77 353  | 80 828  | 80 278  |
| Volumes consommés autorisés (m3/an)     | 82 083  | 79 685  | 79 057    | 86 278  | 78 342  | 85 175  | 81 197  |
| Volumes exportés (m3/an)                | 0       | 0       | 0         | 0       | 0       | 0       | 0       |
| Volumes importés (interconnexion) m3/an | 160 803 | 126 848 | 128 578   | 137 981 | 107 319 | 122 404 | 111 768 |
| Consommation sans comptage (m3/an)      | 680     | 420     | 270       | 270     | 270     | 719     | 200     |
| Volume de service (m3/an)               | 705     | 705     | 719       | 719     | 719     | 3 628   | 719     |
| Linéaire du réseau d'eau potable (km)   | 10      | 10      | 10        | 12      | 12      | 12      | 12      |
| Rendement primaire                      | 50%     | 62%     | 61%       | 62%     | 72%     | 66%     | 72%     |
| Rendement net du réseau                 | 51%     | 63%     | 61%       | 63%     | 73%     | 70%     | 73%     |
| ILC (m3/j/km)                           | 22      | 22      | 22        | 21      | 19      | 20      | 19      |
| ILP (m3/j/km)                           | 21,6    | 12,9    | 13,6      | 12,3    | 6,9     | 8,9     | 7,3     |
| Rendement objectif décret               | 69%     | 69%     | 69%       | 69%     | 69%     | 69%     | 69%     |

### 7.4.2.2.1 Indice linéaire de pertes

D'après les données des RPQS, l'indice linéaire de pertes n'a cessé de diminuer pour la commune de Montescot depuis 2014. Cependant, pour les communes de Théza, Saint-Cyprien, Alenya et Corneilla-Del-Vercol, il est relativement variable d'une année sur l'autre.

Ainsi, sur la commune de Montescot, l'ILP varie de 22 m3/j/km en 2014 à 7,3 m3/j/km en 2020. Sur la commune de Théza, l'ILP varie entre 8 m3/j/km et 4 m3/j/km. Sur l'UDI de Saint-Cyprien/Latour-Bas-Elne, l'ILP atteint sa valeur maximale en 2015 avec 10 m3/j/km avant d'être à 7 m3/j/km en 2020. L'UDI de Corneilla-Del-Vercol a son ILP qui varie entre 6 m3/j/km et 3 m3/j/km en 2017, pour remonter à 7,6 en 2020. La commune d'Alenya voit son ILP passer de 10 m3/j/km en 2014 à 3,6 m3/j/km en 2020.

En fonction de l'indice linéaire de consommation du réseau AEP, la valeur de l'indice linéaire de pertes permet d'évaluer l'état du réseau en se basant sur les critères définis par l'agence de l'eau Rhône Méditerranée Corse suivants :

| Catégorie de réseau        | Rural           | Semi-rural    | Urbain        |  |
|----------------------------|-----------------|---------------|---------------|--|
| ILC (m³/j/km)              | ILC <10         | 10 < ILC < 30 | ILC > 30      |  |
| ILP (m³/j/km) : bon        | ILP < 1,5       | ILP < 3       | ILP < 7       |  |
| ILP (m³/j/km) : acceptable | 1,5 < ILP < 2,5 | 3 < ILP < 5   | 7 < ILP < 10  |  |
| ILP (m³/j/km) : médiocre   | 2,5 < ILP < 4   | 5 < ILP < 8   | 10 < ILP < 15 |  |
| ILP (m³/j/km) : mauvais    | ILP > 4         | ILP > 8       | ILP > 15      |  |

Tableau 8 : Etat du réseau en fonction de l'ILP et de l'ILC

### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 83 / 118
Rapport d'étude Version c

L'ILC de la commune d'Alenya augmente d'une année sur l'autre. Il reste relativement stable sur pour l'ensemble des UDI.

Selon les critères définis par l'Agence de l'Eau RMC, les type de réseau des communes sont les suivants (en 2020) :

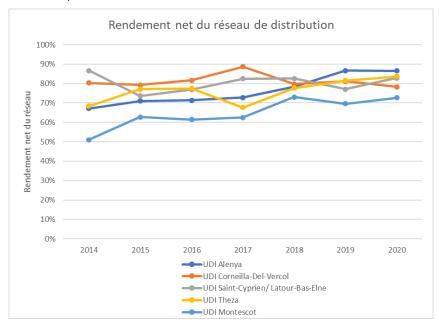
• Alenya : Semi-rural

Corneilla-Del-Vercol : Semi-ruralSaint-Cyprien/Latour-Bas-Elne : Urbain

Théza : Semi-ruralMontescot : Semi-Rural

Selon les mêmes critères, l'état du réseau est le suivant selon les années :

|                               | 2014     | 2015       | 2016             | 2017       | 2018     | 2019       | 2020       |
|-------------------------------|----------|------------|------------------|------------|----------|------------|------------|
|                               |          |            | UDI Alenya       |            |          |            |            |
| Etat du réseau (données RPQS) | Mauvais  | Mauvais    | Mauvais          | Mauvais    | Médiocre | Acceptable | Acceptable |
| UDI Corneilla-Del-Vercol      |          |            |                  |            |          |            |            |
| Etat du réseau (données RPQS) | Médiocre | Médiocre   | Médiocre         | Acceptable | Médiocre | Médiocre   | Médiocre   |
|                               |          | UDI Saint- | Cyprien/ Latour- | Bas-Elne   |          |            |            |
| Etat du réseau (données RPQS) | Bon      | Mauvais    | Acceptable       | Acceptable | Bon      | Acceptable | Bon        |
|                               |          |            | UDI Theza        |            |          |            |            |
| Etat du réseau (données RPQS) | Mauvais  | Médiocre   | Médiocre         | Mauvais    | Médiocre | Acceptable | Acceptable |
| UDI Montescot                 |          |            |                  |            |          |            |            |
| Etat du réseau (données RPQS) | Mauvais  | Mauvais    | Mauvais          | Mauvais    | Médiocre | Mauvais    | Médiocre   |


#### 7.4.2.2.2 Rendement net du réseau

En 2020, le rendement net était de 73% sur l'UDI de Montescot, de 84% sur l'UDI de Théza, de 83% sur l'UDI de Saint-Cyprien/Latour-Bas-Elne, de 78% sur l'UDI de Corneilla-Del-Vercol et de 87% sur l'UDI d'Alenya.

Selon le décret du 27 janvier 2012, le rendement du réseau de distribution doit être au minimum de 85 % ou à défaut de 65 % + ILC/5.

Ces rendements sont atteints pour l'UDI d'Alenya, de Corneilla-Del-Vercol, de Saint-Cyprien/Latour-Bas-Elne, de Théza, et de Montescot.

Le graphique suivant représente les rendements nets du réseau des communes :



### 8 DIAGNOSTIC DU RESEAU AEP

### 8.1 Analyse des debits residuels nocturnes sur chaque secteur

L'analyse des débits résiduels nocturnes permet d'identifier les secteurs potentiellement fuyards, selon l'hypothèse que les consommations nocturnes sont négligeables et que les volumes de nuit correspondent donc uniquement aux fuites.

L'analyse des débits résiduels nocturnes a été réalisée à l'aide des données de télésurveillance de fin 2021 (pas de temps de 1 minute à 1 heure selon les appareils de comptage).

L'analyse a porté sur les secteurs suivants :

- **UDI de Saint-Cyprien Latour-Bas-Elne :** Débitmètre mis en place provisoirement en sortie de réservoir du 9/11/2021 au 2/12/2021
- **UDI de Corneilla-del-Vercol** : Compteur en sortie du réservoir de Corneilla-del-Vercol du 17/12/2021 au 21/12/2021
- UDI de Montescot : Compteur de distribution Montescot du 17/12/2021 au 21/12/2021
- UDI d'Alenya : Compteur en sortie du réservoir d'Alenya du 17/12/2021 au 21/12/2021
- UDI de Théza: Compteur en sortie du réservoir de Théza du 17/12/2021 au 21/12/2021

Le tableau ci-après présente les résultats de l'estimation des débits résiduels nocturnes sur les secteurs définis précédemment.

Pour l'analyse des débits résiduels nocturnes, les consommations nocturnes ont été considérées nulles. Les débits nocturnes observés ont donc été associés aux fuites sur le réseau.

| Nom du secteur                          | Débits<br>résiduels<br>nocturnes (m3/h)<br>_ A | Débits des<br>consommateurs<br>nocturnes (m3/h)<br>_ B | Débits<br>nocturnes liés à<br>des fuites _ C =<br>A-B (m3/h) | Linéaire du sec-<br>teur concerné<br>(ml) _ D | Indice<br>Linéaire de Perte<br>(m3/j/km) _ ILP =<br>Cx24 / (D/1000) |
|-----------------------------------------|------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------|
| UDI de Saint-Cyprien  – Latour-Bas-Elne | 150                                            | NC                                                     | 150                                                          | 153 708                                       | 23,4                                                                |
| UDI de Corneilla-del-<br>Vercol         | 7                                              | NC                                                     | 7                                                            | 15 071                                        | 11,1                                                                |
| UDI de Montescot                        | 10                                             | NC                                                     | 10                                                           | 14 298                                        | 16,8                                                                |
| UDI d'Alenya                            | 13                                             | NC                                                     | 13                                                           | 26 507                                        | 11,8                                                                |
| UDI de Théza                            | 9                                              | NC                                                     | 9                                                            | 13 903                                        | 15,5                                                                |

On note des débits de fuite non négligeables sur l'ensemble des secteurs. Ces débits de fuites peuvent être majorés du fait de la méconnaissance des débits consommés la nuit sur les différentes communes. A noter qu'en période hivernale, ces débits sont a priori négligeables.

Les indices linéaires de pertes par secteur sont plus élevés fin 2021 que ceux déterminés en annuel pour l'année 2020.

## 8.2 RECHERCHE DE FUITES

Chaque année, Véolia effectue des recherches et réparations de fuites sur son réseau. La synthèse de ces investigations sur l'année 2020 est la suivante :

| Commune              | Nombre de fuites<br>repérées et réparées |
|----------------------|------------------------------------------|
| Alénya               | 5                                        |
| Corneilla-del-Vercol | 2                                        |
| Montescot            | 6                                        |
| Saint Cyprien        | 7                                        |
| Latour-Bas-Elne      | 0                                        |
| Théza                | 2                                        |

### 8.3 MODELISATION DU RESEAU AEP

De manière à mieux comprendre le fonctionnement du réseau actuel d'eau potable de la CC Sud Roussillon, une démarche de modélisation a été entreprise.

La modélisation du réseau d'alimentation en eau potable a été réalisée avec le logiciel EPANET 2.0. Le rapport de modélisation est joint en annexe.

### 9.1 DETERMINATION DES BESOINS FUTURS

### 9.1.1 Hypotheses de Calcul

### 9.1.1.1 INDICE DE PERFORMANCE DES RESEAUX AEP

Les indices de performance retenus en situation future pour chacune des UDI sont les suivants :

| UDI                            | Moyenne<br>rendements 7<br>dernières années |     | Objectif rendement |
|--------------------------------|---------------------------------------------|-----|--------------------|
| Alenya                         | 76%                                         | 87% | 85%                |
| Corneilla-Del-Vercol           | 81%                                         | 89% | 85%                |
| Saint-Cyprien/ Latour-Bas-Elne | 80%                                         | 87% | 85%                |
| Theza                          | 76%                                         | 84% | 85%                |
| Montescot                      | 65%                                         | 73% | 85%                |

### 9.1.1.2 HABITUDES DE CONSOMMATIONS

Les ratios de consommation retenus en situation future pour chacune des UDI sont les suivants :

| UDI                            | Moyenne ratios 7<br>dernières<br>années (l/j/hab) | 7 dernières | Ratio pris en<br>compte pour le<br>futur (l/j/hab) |
|--------------------------------|---------------------------------------------------|-------------|----------------------------------------------------|
| Alenya                         | 127                                               | 132         | 130                                                |
| Corneilla-Del-Vercol           | 136                                               | 157         | 150                                                |
| Saint-Cyprien/ Latour-Bas-Elne | 166                                               | 180         | 170                                                |
| Theza                          | 110                                               | 122         | 125                                                |
| Montescot                      | 119                                               | 130         | 130                                                |

### 9.1.1.3 CONSOMMATION NON FACTUREE

Les consommations non facturées retenues en situation future pour chacune des UDI sont les suivantes :

| UDI                            | Moyenne<br>consommations<br>non facturées 7<br>dernières années<br>(m3/an) | Maximum<br>consommations<br>non facturées 7<br>dernières années<br>(m3/an) | Consommation<br>non facturée prise<br>en compte pour le<br>futur (m3/an) |  |
|--------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Alenya                         | 2 508                                                                      | 3 325                                                                      | 2 500                                                                    |  |
| Corneilla-Del-Vercol           | 4 019                                                                      | 5 121                                                                      | 4 000                                                                    |  |
| Saint-Cyprien/ Latour-Bas-Elne | 19 518                                                                     | 32 150                                                                     | 20 000                                                                   |  |
| Theza                          | 1 888                                                                      | 2 361                                                                      | 1 900                                                                    |  |
| Montescot                      | 1 535                                                                      | 4 347                                                                      | 1 600                                                                    |  |

### 9.1.1.4 CONSOMMATIONS COMMUNALES

Les consommations communales retenues en situation future pour chacune des UDI sont les suivantes :

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 87 / 118
Rapport d'étude Version c

| UDI                            | Moyenne<br>consommations<br>communales 7<br>dernières années<br>(m3/an) | Maximum<br>consommations<br>communales 7<br>dernières années<br>(m3/an) | Consommation<br>communale prise<br>en compte pour le<br>futur (m3/an) |  |
|--------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Alenya                         | 6 355                                                                   | 10 489                                                                  | 10 500                                                                |  |
| Corneilla-Del-Vercol           | 470                                                                     | 650                                                                     | 650                                                                   |  |
| Saint-Cyprien/ Latour-Bas-Elne | 108 334                                                                 | 123 002                                                                 | 125 000                                                               |  |
| Theza                          | 4 123                                                                   | 5 346                                                                   | 5 400                                                                 |  |
| Montescot                      | 0                                                                       | 0                                                                       | 0                                                                     |  |

### 9.1.1.5 CONSOMMATIONS NON DOMESTIQUES

Les consommations non domestiques retenues en situation future pour chacune des UDI sont les suivantes :

| UDI                            | Moyenne<br>consommations ND<br>7 dernières années<br>(m3/an) | Maximum ND 7<br>dernières années<br>(m3/an) | Consommation ND prise en compte pour le futur (m3/an) |
|--------------------------------|--------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|
| Alenya                         | 7 190                                                        | 7 966                                       | 8 000                                                 |
| Corneilla-Del-Vercol           | 5 602                                                        | 11 618                                      | 12 000                                                |
| Saint-Cyprien/ Latour-Bas-Elne | 104 840                                                      | 119 723                                     | 120 000                                               |
| Theza                          | 3 302                                                        | 4 523                                       | 4 500                                                 |
| Montescot                      | 2 791                                                        | 3 277                                       | 3 300                                                 |

### 9.1.1.6 COEFFICIENTS DE POINTE

Les coefficients retenus correspondent aux coefficients observés en situation actuelle, c'est-à-dire :

| 2021                                              | Alenya | Corneilla-del-<br>Vercol | St-Cyprien -<br>Latour-Bas-<br>Elne | Théza | Montescot |
|---------------------------------------------------|--------|--------------------------|-------------------------------------|-------|-----------|
| Coefficient du jour de pointe                     | 1,5    | 1,4                      | 1,9                                 | 1,3   | 1,5       |
| Coefficient du jour moyen de la semaine de pointe | 1,5    | 1,2                      | 1,8                                 | 1,2   | 1,5       |
| Coefficient du mois de pointe                     | 1,2    | 1,2                      | 1,6                                 | 1,1   | 1,2       |

### 9.1.2 ESTIMATION DES BESOINS FUTURS

En prenant en compte les hypothèses présentées ci-avant, les besoins futurs sur chacune des UDI sont présentés ci-après.

### 9.1.2.1 BESOINS FUTURS UDI ALENYA

| Besoins futurs Alenya                                                                                                    |                             | 2020                     | 2025           | 2030           | 2035           | 2040           | 2045           | 2050           |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Ratio de consommation                                                                                                    | L/hab/j                     | 128                      | 130            | 130            | 130            | 130            | 130            | 130            |
| Population permanente                                                                                                    | -                           | 3 660                    | 3 873          | 4 060          | 4 256          | 4 461          | 4 677          | 4 902          |
| Population saisonnière                                                                                                   | -                           | 2 036                    | 2 036          | 2 036          | 2 036          | 2 036          | 2 036          | 2 036          |
| Population moyenne*                                                                                                      | -                           | 3 999                    | 4 213          | 4 399          | 4 595          | 4 801          | 5 016          | 5 241          |
|                                                                                                                          |                             |                          |                |                |                |                |                |                |
| Consommation moyenne journalière domestique                                                                              | m3/j                        | 510                      | 548            | 572            | 597            | 624            | 652            | 681            |
| Coefficient du jour moyen du mois de pointe                                                                              |                             | 1,2                      | 1,2            | 1,2            | 1,2            | 1,2            | 1,2            | 1,2            |
| Consommation domestique du jour moyen du mois de pointe                                                                  | m3/j                        | 606                      | 657            | 686            | 717            | 749            | 782            | 818            |
| Coefficient du jour moyen de la semaine de pointe                                                                        |                             | 1,5                      | 1,5            | 1,5            | 1,5            | 1,5            | 1,5            | 1,5            |
| Consommation domestique du jour moyen de la semaine de pointe                                                            | m3/j                        | 740                      | 821            | 858            | 896            | 936            | 978            | 1 022          |
| Coefficient du jour de pointe                                                                                            |                             | 1,5                      | 1,5            | 1,5            | 1,5            | 1,5            | 1,5            | 1,5            |
| Consommation domestique du jour de pointe                                                                                | m3/j                        | 778                      | 821            | 858            | 896            | 936            | 978            | 1 022          |
| Consommation annuelle domestique                                                                                         | m 3/an                      | 186 316                  | 199 888        | 208 755        | 218 049        | 227 791        | 238 003        | 248 708        |
| Consommation annuelle communale                                                                                          | m3/an                       | 10 489                   | 10 500         | 10 500         | 10 500         | 10 500         | 10 500         | 10 500         |
| Volumes non facturés                                                                                                     | m3/an                       | 1 955                    | 2 500          | 2 500          | 2 500          | 2 500          | 2 500          | 2 500          |
| Consommation des consommateurs non domestiques                                                                           | m3/an                       | 6 300                    | 8 000          | 8 000          | 8 000          | 8 000          | 8 000          | 8 000          |
| Consommation annuelle totale                                                                                             | m 3/an                      | 205 060                  | 220 888        | 229 755        | 239 049        | 248 791        | 259 003        | 269 708        |
| Consommation totale moyenne journalière                                                                                  | m3/j                        | 562                      | 605            | 629            | 655            | 682            | 710            | 739            |
| Consommation totale du jour moyen du mois de pointe                                                                      | m3/i                        | 667                      | 726            | 755            | 786            | 818            | 852            | 887            |
| Consommation totale du jour moyen de la semaine de pointe                                                                | m3/i                        | 815                      | 908            | 944            | 982            | 1 022          | 1 064          | 1 108          |
| Consommation totale du jour de pointe  Consommation totale du jour de pointe                                             | m3/j                        | 856                      | 908            | 944            | 982            | 1 022          | 1 064          | 1 108          |
| Consonmation totale du jour de pointe                                                                                    | 116/j                       | 000                      | 300            | 344            | 302            | 1 022          | 1 004          | 1 100          |
| Rendement réseau                                                                                                         | %                           | 87%                      | 85%            | 85%            | 85%            | 85%            | 85%            | 85%            |
| Pertes journalières                                                                                                      | m3/j                        | 87                       | 107            | 111            | 116            | 120            | 125            | 130            |
| Distribution moyenne journalière                                                                                         | m3/j                        | 649                      | 712            | 741            | 771            | 802            | 835            | 869            |
| Distribution du jour moyen du mois de pointe                                                                             | m3/j                        | 770                      | 854            | 889            | 925            | 962            | 1 002          | 1 043          |
| Distribution du jour moyen de la semaine de pointe                                                                       | m3/j                        | 941                      | 1 068          | 1 111          | 1 156          | 1 203          | 1 252          | 1 304          |
| Distribution du jour de pointe                                                                                           | m 3/j                       | 988                      | 1 068          | 1 111          | 1 156          | 1 203          | 1 252          | 1 304          |
| Distribution du jour de pointe arrondie                                                                                  | m 3/j                       | 990                      | 1 070          | 1 110          | 1 160          | 1 200          | 1 250          | 1 300          |
| Volume annuel                                                                                                            | m3/an                       | 236 842                  | 259 868        | 270 299        | 281 234        | 292 695        | 304 710        | 317 304        |
| Volume annuel (arrondi retenu)                                                                                           | m3/an                       | 237 000                  | 260 000        | 270 000        | 281 000        | 293 000        | 305 000        | 317 000        |
| Rendement du réseau d'adduction                                                                                          |                             | 100%                     | 100%           | 100%           | 100%           | 100%           | 100%           | 100%           |
| Pertes journalières                                                                                                      | m3/j                        | 0                        | 0              | 0              | 0              | 0              | 0              | 0              |
| Production moyenne journalière                                                                                           | m3/j                        | 649                      | 712            | 741            | 771            | 802            | 835            | 869            |
|                                                                                                                          |                             |                          |                |                |                |                | 000            |                |
|                                                                                                                          |                             |                          | 854            | 889            | 925            | 962            | 1 002          | 1 043          |
| Production du jour moyen du mois de pointe                                                                               | m3/j                        | 770                      | 854<br>1.068   | 889<br>1 111   | 925<br>1 156   | 962<br>1 203   | 1 002<br>1 252 | 1 043          |
| Production du jour moyen du mois de pointe Production du jour moyen de la semaine de pointe                              | m3/j<br>m3/j                | 770<br>941               | 1 068          | 1 111          | 1 156          | 1 203          | 1 252          | 1 304          |
| Production du jour moyen du mois de pointe Production du jour moyen de la semaine de pointe Production du jour de pointe | m3/j<br>m3/j<br><b>m3/j</b> | 770<br>941<br><b>988</b> | 1 068<br>1 068 | 1 111<br>1 111 | 1 156<br>1 156 | 1 203<br>1 203 | 1 252<br>1 252 | 1 304<br>1 304 |
| Production du jour moyen du mois de pointe Production du jour moyen de la semaine de pointe                              | m3/j<br>m3/j                | 770<br>941               | 1 068          | 1 111          | 1 156          | 1 203          | 1 252          | 1 304          |

<sup>\*</sup>la population moyenne est calculée en prenant l'hypothèse que la population saisonnière est présente sur la commune 2 mois par an.

A l'horizon 2050, les besoins totaux en distribution de l'UDI d'Alenya seront d'environ 317 000  $m^3$ /an pour un volume moyen journalier de 870  $m^3$ /j et un volume le jour de pointe de 1 300  $m^3$ /j.

### 9.1.2.2 BESOINS FUTURS UDI CORNEILLA-DEL-VERCOL

| Besoins futurs Corneilla-del-Vercol                           |         | 2020    | 2025    | 2030    | 2035    | 2040    | 2045    | 2050    |
|---------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Ratio de consommation                                         | L/hab/j | 157     | 150     | 150     | 150     | 150     | 150     | 150     |
| Population permanente                                         | -       | 2 321   | 2 452   | 2 588   | 2 732   | 2 884   | 3 044   | 3 213   |
| Population saisonnière                                        | -       | 168     | 168     | 168     | 168     | 168     | 168     | 168     |
| Population moyenne*                                           | -       | 2 349   | 2 480   | 2 616   | 2 760   | 2 912   | 3 072   | 3 241   |
| Consommation moyenne journalière domestique                   | m3/j    | 368     | 372     | 392     | 414     | 437     | 461     | 486     |
| Coefficient du jour moyen du mois de pointe                   |         | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     |
| Consommation domestique du jour moyen du mois de pointe       | m3/j    | 435     | 446     | 471     | 497     | 524     | 553     | 583     |
| Coefficient du jour moyen de la semaine de pointe             |         | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     |
| Consommation domestique du jour moyen de la semaine de pointe | m3/j    | 451     | 446     | 471     | 497     | 524     | 553     | 583     |
| Coefficient du jour de pointe                                 |         | 1,3     | 1,4     | 1,4     | 1,4     | 1,4     | 1,4     | 1,4     |
| Consommation domestique du jour de pointe                     | m3/j    | 480     | 521     | 549     | 580     | 611     | 645     | 681     |
| Consommation annuelle domestique                              | m 3/an  | 134 181 | 135 772 | 143 233 | 151 110 | 159 424 | 168 201 | 177 466 |
| Consommation annuelle communale                               | m3/an   | 360     | 650     | 650     | 650     | 650     | 650     | 650     |
| Volumes non facturés                                          | m3/an   | 1 821   | 4 000   | 4 000   | 4 000   | 4 000   | 4 000   | 4 000   |
| Consommation des consommateurs non domestiques                | m3/an   | 3 089   | 12 000  | 12 000  | 12 000  | 12 000  | 12 000  | 12 000  |
| Consommation annuelle totale                                  | m3/an   | 139 451 | 152 422 | 159 883 | 167 760 | 176 074 | 184 851 | 194 116 |
| Consommation totale moyenne journalière                       | m3/j    | 382     | 418     | 438     | 460     | 482     | 506     | 532     |
| Consommation totale du jour moyen du mois de pointe           | m3/j    | 452     | 501     | 526     | 552     | 579     | 608     | 638     |
| Consommation totale du jour moyen de la semaine de pointe     | m3/j    | 468     | 501     | 526     | 552     | 579     | 608     | 638     |
| Consommation totale du jour de pointe                         | m3/j    | 499     | 585     | 613     | 643     | 675     | 709     | 745     |
| Rendement réseau                                              | %       | 78%     | 85%     | 85%     | 85%     | 85%     | 85%     | 85%     |
| Pertes journalières                                           | m3/j    | 106     | 74      | 77      | 81      | 85      | 89      | 94      |
| Distribution moyenne journalière                              | m3/j    | 488     | 491     | 515     | 541     | 568     | 596     | 626     |
| Distribution du jour moyen du mois de pointe                  | m3/j    | 576     | 590     | 618     | 649     | 681     | 715     | 751     |
| Distribution du jour moyen de la semaine de pointe            | m3/j    | 598     | 590     | 618     | 649     | 681     | 715     | 751     |
| Distribution du jour de pointe                                | m3/j    | 636     | 688     | 721     | 757     | 795     | 834     | 876     |
| Distribution du jour de pointe arrondie                       | m3/j    | 640     | 690     | 720     | 760     | 790     | 830     | 880     |
| Volume annuel                                                 | m3/an   | 177 974 | 179 319 | 188 098 | 197 365 | 207 146 | 217 472 | 228 371 |
| Volume annuel (arrondi retenu)                                | m3/an   | 178 000 | 179 000 | 188 000 | 197 000 | 207 000 | 217 000 | 228 000 |
| Rendement du réseau d'adduction                               |         | 100%    | 100%    | 100%    | 100%    | 100%    | 100%    | 100%    |
| Pertes journalières                                           | m3/j    | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Production moyenne journalière                                | m3/j    | 488     | 491     | 515     | 541     | 568     | 596     | 626     |
| Production du jour moyen du mois de pointe                    | m3/j    | 576     | 590     | 618     | 649     | 681     | 715     | 751     |
| Production du jour moyen de la semaine de pointe              | m3/j    | 598     | 590     | 618     | 649     | 681     | 715     | 751     |
| Production du jour de pointe                                  | m3/j    | 636     | 688     | 721     | 757     | 795     | 834     | 876     |
| Production du jour de pointe arrondie                         | m3/j    | 640     | 690     | 720     | 760     | 790     | 830     | 880     |
| Volume annuel                                                 | m3/an   | 177 974 | 179 319 | 188 098 | 197 365 | 207 146 | 217 472 | 228 371 |
| Volume annuel (arrondi retenu)                                | m3/an   | 178 000 | 179 000 | 188 000 | 197 000 | 207 000 | 217 000 | 228 000 |

<sup>\*</sup>la population moyenne est calculée en prenant l'hypothèse que la population saisonnière est présente sur la commune 2 mois par an.

A l'horizon 2050, les besoins totaux en distribution de l'UDI de Corneilla-del-Vercol seront d'environ 228 000 m³/an pour un volume moyen journalier de 630 m³/j et un volume le jour de pointe de 880 m³/j.

### 9.1.2.3 <u>BESOINS FUTURS UDI SAINT-CYPRIEN – LATOUR-BAS-ELNE</u>

| Besoins futurs Saint-Cyprien - Latour-Bas-Elne                |         | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      | 2050      |
|---------------------------------------------------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Ratio de consommation                                         | L/hab/j | 180       | 170       | 170       | 170       | 170       | 170       | 170       |
| Population permanente                                         | -       | 13 515    | 14 203    | 14 462    | 14 742    | 15 044    | 15 371    | 15 724    |
| Population saisonnière                                        | -       | 57 866    | 57 866    | 57 866    | 57 866    | 57 866    | 57 866    | 57 866    |
| Population moyenne*                                           | -       | 23 159    | 23 848    | 24 107    | 24 386    | 24 689    | 25 015    | 25 369    |
| Consommation moyenne journalière domestique                   | m3/j    | 4 158     | 4 054     | 4 098     | 4 146     | 4 197     | 4 253     | 4 313     |
| Coefficient du jour moyen du mois de pointe                   |         | 1,6       | 1,6       | 1,6       | 1,6       | 1,6       | 1,6       | 1,6       |
| Consommation domestique du jour moyen du mois de pointe       | m3/j    | 6 855     | 6 487     | 6 557     | 6 633     | 6 715     | 6 804     | 6 900     |
| Coefficient du jour moyen de la semaine de pointe             |         | 1,8       | 1,8       | 1,8       | 1,8       | 1,8       | 1,8       | 1,8       |
| Consommation domestique du jour moyen de la semaine de pointe | m3/j    | 7 413     | 7 297     | 7 377     | 7 462     | 7 555     | 7 655     | 7 763     |
| Coefficient du jour de pointe                                 |         | 1,9       | 1,90      | 1,90      | 1,90      | 1,90      | 1,90      | 1,90      |
| Consommation domestique du jour de pointe                     | m3/j    | 8 024     | 7 703     | 7 786     | 7 877     | 7 974     | 8 080     | 8 194     |
| Consommation annuelle domestique                              | m 3/an  | 1 517 509 | 1 479 739 | 1 495 808 | 1 513 172 | 1 531 935 | 1 552 209 | 1 574 117 |
| Consommation annuelle communale                               | m3/an   | 90 607    | 125 000   | 125 000   | 125 000   | 125 000   | 125 000   | 125 000   |
| Volumes non facturés                                          | m3/an   | 10 147    | 20 000    | 20 000    | 20 000    | 20 000    | 20 000    | 20 000    |
| Consommation des consommateurs non domestiques                | m3/an   | 118 782   | 120 000   | 120 000   | 120 000   | 120 000   | 120 000   | 120 000   |
| Consommation annuelle totale                                  | m 3/an  | 1 737 045 | 1 744 739 | 1 760 808 | 1 778 172 | 1 796 935 | 1 817 209 | 1 839 117 |
| Consommation totale moyenne journalière                       | m3/j    | 4 759     | 4 780     | 4 824     | 4 872     | 4 923     | 4 979     | 5 039     |
| Consommation totale du jour moyen du mois de pointe           | m3/j    | 7 847     | 7 648     | 7 719     | 7 795     | 7 877     | 7 966     | 8 062     |
| Consommation totale du jour moyen de la semaine de pointe     | m3/j    | 8 486     | 8 604     | 8 683     | 8 769     | 8 862     | 8 962     | 9 070     |
| Consommation totale du jour de pointe                         | m3/j    | 9 185     | 9 082     | 9 166     | 9 256     | 9 354     | 9 459     | 9 573     |
| Rendement réseau                                              | %       | 83%       | 85%       | 85%       | 85%       | 85%       | 85%       | 85%       |
| Pertes journalières                                           | m3/j    | 986       | 844       | 851       | 860       | 869       | 879       | 889       |
| Distribution moyenne journalière                              | m3/j    | 5 745     | 5 624     | 5 675     | 5 731     | 5 792     | 5 857     | 5 928     |
| Distribution du jour moyen du mois de pointe                  | m3/j    | 9 472     | 8 998     | 9 081     | 9 170     | 9 267     | 9 372     | 9 485     |
| Distribution du jour moyen de la semaine de pointe            | m3/j    | 10 243    | 10 123    | 10 216    | 10 317    | 10 425    | 10 543    | 10 670    |
| Distribution du jour de pointe                                | m 3/j   | 11 087    | 10 685    | 10 783    | 10 890    | 11 005    | 11 129    | 11 263    |
| Distribution du jour de pointe arrondie                       | m3/j    | 11 090    | 10 680    | 10 780    | 10 890    | 11 000    | 11 130    | 11 260    |
| Volume annuel                                                 | m3/an   | 2 096 830 | 2 052 635 | 2 071 539 | 2 091 967 | 2 114 041 | 2 137 893 | 2 163 667 |
| Volume annuel (arrondi retenu)                                | m3/an   | 2 097 000 | 2 053 000 | 2 072 000 | 2 092 000 | 2 114 000 | 2 138 000 | 2 164 000 |
| Rendement du réseau d'adduction                               |         | 100%      | 100%      | 100%      | 100%      | 100%      | 100%      | 100%      |
| Pertes journalières                                           | m3/j    | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| Production moyenne journalière                                | m3/j    | 5 745     | 5 624     | 5 675     | 5 731     | 5 792     | 5 857     | 5 928     |
| Production du jour moyen du mois de pointe                    | m3/j    | 9 472     | 8 998     | 9 081     | 9 170     | 9 267     | 9 372     | 9 485     |
| Production du jour moyen de la semaine de pointe              | m3/j    | 10 243    | 10 123    | 10 216    | 10 317    | 10 425    | 10 543    | 10 670    |
| Production du jour de pointe                                  | m3/j    | 11 087    | 10 685    | 10 783    | 10 890    | 11 005    | 11 129    | 11 263    |
| Production du jour de pointe arrondie                         | m3/j    | 11 090    | 10 680    | 10 780    | 10 890    | 11 000    | 11 130    | 11 260    |
| Volume annuel                                                 | m3/an   | 2 096 830 | 2 052 635 | 2 071 539 | 2 091 967 | 2 114 041 | 2 137 893 | 2 163 667 |
| Volume annuel (arrondi retenu)                                | m3/an   | 2 097 000 | 2 053 000 | 2 072 000 | 2 092 000 | 2 114 000 | 2 138 000 | 2 164 000 |

<sup>\*</sup>la population moyenne est calculée en prenant l'hypothèse que la population saisonnière est présente sur la commune 2 mois par an.

A l'horizon 2050, les besoins totaux en distribution de l'UDI de Saint-Cyprien – Latour-Bas-Elne seront d'environ 2 164 000 m³/an pour un volume moyen journalier de 5 930 m³/j et un volume le jour de pointe de 11 260 m³/j.

### 9.1.2.4 BESOINS FUTURS UDI THEZA

| Besoins futurs Théza                                          |         | 2020    | 2025    | 2030    | 2035    | 2040    | 2045    | 2050    |
|---------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Ratio de consommation                                         | L/hab/j | 122     | 125     | 125     | 125     | 125     | 125     | 125     |
| Population permanente                                         | -       | 2 137   | 2 276   | 2 398   | 2 527   | 2 663   | 2 805   | 2 956   |
| Population saisonnière                                        | -       | 140     | 140     | 140     | 140     | 140     | 140     | 140     |
| Population moyenne*                                           | -       | 2 160   | 2 300   | 2 422   | 2 550   | 2 686   | 2 829   | 2 979   |
| Consommation moyenne journalière domestique                   | m3/j    | 263     | 287     | 303     | 319     | 336     | 354     | 372     |
| Coefficient du jour moyen du mois de pointe                   |         | 1,1     | 1,1     | 1,1     | 1,1     | 1,1     | 1,1     | 1,1     |
| Consommation domestique du jour moyen du mois de pointe       | m3/j    | 279     | 316     | 333     | 351     | 369     | 389     | 410     |
| Coefficient du jour moyen de la semaine de pointe             |         | 1,1     | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     |
| Consommation domestique du jour moyen de la semaine de pointe | m3/j    | 284     | 345     | 363     | 383     | 403     | 424     | 447     |
| Coefficient du jour de pointe                                 |         | 1,2     | 1,3     | 1,3     | 1,3     | 1,3     | 1,3     | 1,3     |
| Consommation domestique du jour de pointe                     | m3/j    | 306     | 374     | 394     | 414     | 436     | 460     | 484     |
| Consommation annuelle domestique                              | m 3/an  | 96 169  | 104 916 | 110 488 | 116 359 | 122 545 | 129 062 | 135 930 |
| Consommation annuelle communale                               | m3/an   | 4 075   | 5 400   | 5 400   | 5 400   | 5 400   | 5 400   | 5 400   |
| Volumes non facturés                                          | m3/an   | 1 705   | 1 900   | 1 900   | 1 900   | 1 900   | 1 900   | 1 900   |
| Consommation des consommateurs non domestiques                | m3/an   | 3 207   | 4 500   | 4 500   | 4 500   | 4 500   | 4 500   | 4 500   |
| Consommation annuelle totale                                  | m3/an   | 105 156 | 116 716 | 122 288 | 128 159 | 134 345 | 140 862 | 147 730 |
| Consommation totale moyenne journalière                       | m3/j    | 288     | 320     | 335     | 351     | 368     | 386     | 405     |
| Consommation totale du jour moyen du mois de pointe           | m3/j    | 305     | 352     | 369     | 386     | 405     | 425     | 445     |
| Consommation totale du jour moyen de la semaine de pointe     | m3/j    | 311     | 384     | 402     | 421     | 442     | 463     | 486     |
| Consommation totale du jour de pointe                         | m3/j    | 335     | 416     | 436     | 456     | 478     | 502     | 526     |
| Rendement réseau                                              | %       | 84%     | 85%     | 85%     | 85%     | 85%     | 85%     | 85%     |
| Pertes journalières                                           | m3/j    | 56      | 56      | 59      | 62      | 65      | 68      | 71      |
| Distribution moyenne journalière                              | m3/j    | 344     | 376     | 394     | 413     | 433     | 454     | 476     |
| Distribution du jour moyen du mois de pointe                  | m3/j    | 365     | 414     | 434     | 454     | 476     | 499     | 524     |
| Distribution du jour moyen de la semaine de pointe            | m3/j    | 371     | 451     | 473     | 496     | 520     | 545     | 571     |
| Distribution du jour de pointe                                | m 3/j   | 400     | 489     | 512     | 537     | 563     | 590     | 619     |
| Distribution du jour de pointe arrondie                       | m 3/j   | 400     | 490     | 510     | 540     | 560     | 590     | 620     |
| Volume annuel                                                 | m3/an   | 125 645 | 137 313 | 143 868 | 150 775 | 158 053 | 165 720 | 173 799 |
| Volume annuel (arrondi retenu)                                | m3/an   | 126 000 | 137 000 | 144 000 | 151 000 | 158 000 | 166 000 | 174 000 |
| Rendement du réseau d'adduction                               |         | 100%    | 100%    | 100%    | 100%    | 100%    | 100%    | 100%    |
| Pertes journalières                                           | m3/j    | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Production moyenne journalière                                | m3/j    | 344     | 376     | 394     | 413     | 433     | 454     | 476     |
| Production du jour moyen du mois de pointe                    | m3/j    | 365     | 414     | 434     | 454     | 476     | 499     | 524     |
| Production du jour moyen de la semaine de pointe              | m3/j    | 371     | 451     | 473     | 496     | 520     | 545     | 571     |
| Production du jour de pointe                                  | m3/j    | 400     | 489     | 512     | 537     | 563     | 590     | 619     |
| Production du jour de pointe arrondie                         | m3/j    | 400     | 490     | 510     | 540     | 560     | 590     | 620     |
| Volume annuel                                                 | m3/an   | 125 645 | 137 313 | 143 868 | 150 775 | 158 053 | 165 720 | 173 799 |
| Volume annuel (arrondi retenu)                                | m3/an   | 126 000 | 137 000 | 144 000 | 151 000 | 158 000 | 166 000 | 174 000 |

<sup>\*</sup>la population moyenne est calculée en prenant l'hypothèse que la population saisonnière est présente sur la commune 2 mois par an.

A l'horizon 2050, les besoins totaux en distribution de l'UDI de Théza seront d'environ 174 000  $m^3$ /an pour un volume moyen journalier de 480  $m^3$ /j et un volume le jour de pointe de 670  $m^3$ /j.

### 9.1.2.5 BESOINS FUTURS UDI MONTESCOT

| Besoins futurs Montescot                                      |         | 2020    | 2025    | 2030    | 2035    | 2040    | 2045    | 2050    |
|---------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Ratio de consommation                                         | L/hab/j | 120     | 130     | 130     | 130     | 130     | 130     | 130     |
| Population permanente                                         | -       | 1 751   | 1 864   | 2 061   | 2 279   | 2 520   | 2 786   | 3 081   |
| Population saisonnière                                        | -       | 168     | 168     | 168     | 168     | 168     | 168     | 168     |
| Population moyenne*                                           | -       | 1 779   | 1 892   | 2 089   | 2 307   | 2 548   | 2 814   | 3 109   |
| Consommation moyenne journalière domestique                   | m3/j    | 214     | 246     | 272     | 300     | 331     | 366     | 404     |
| Coefficient du jour moyen du mois de pointe                   |         | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     | 1,2     |
| Consommation domestique du jour moyen du mois de pointe       | m3/j    | 257     | 295     | 326     | 360     | 397     | 439     | 485     |
| Coefficient du jour moyen de la semaine de pointe             |         | 1,5     | 1,5     | 1,5     | 1,5     | 1,5     | 1,5     | 1,5     |
| Consommation domestique du jour moyen de la semaine de pointe | m3/j    | 321     | 369     | 407     | 450     | 497     | 549     | 606     |
| Coefficient du jour de pointe                                 |         | 1,5     | 1,5     | 1,5     | 1,5     | 1,5     | 1,5     | 1,5     |
| Consommation domestique du jour de pointe                     | m3/j    | 321     | 369     | 407     | 450     | 497     | 549     | 606     |
| Consommation annuelle domestique                              | m 3/an  | 78 211  | 89 776  | 99 127  | 109 467 | 120 900 | 133 543 | 147 521 |
| Consommation annuelle communale                               | m3/an   | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Volumes non facturés                                          | m3/an   | 919     | 1 600   | 1 600   | 1 600   | 1 600   | 1 600   | 1 600   |
| Consommation des consommateurs non domestiques                | m3/an   | 2 067   | 3 300   | 3 300   | 3 300   | 3 300   | 3 300   | 3 300   |
| Consommation annuelle totale                                  | m 3/an  | 81 197  | 94 676  | 104 027 | 114 367 | 125 800 | 138 443 | 152 421 |
| Consommation totale moyenne journalière                       | m3/j    | 222     | 259     | 285     | 313     | 345     | 379     | 418     |
| Consommation totale du jour moyen du mois de pointe           | m3/j    | 267     | 311     | 342     | 376     | 414     | 455     | 501     |
| Consommation totale du jour moyen de la semaine de pointe     | m3/j    | 334     | 389     | 428     | 470     | 517     | 569     | 626     |
| Consommation totale du jour de pointe                         | m3/j    | 334     | 389     | 428     | 470     | 517     | 569     | 626     |
| Rendement réseau                                              | %       | 73%     | 85%     | 85%     | 85%     | 85%     | 85%     | 85%     |
| Pertes journalières                                           | m3/j    | 84      | 46      | 50      | 55      | 61      | 67      | 74      |
| Distribution moyenne journalière                              | m3/j    | 306     | 305     | 335     | 369     | 405     | 446     | 491     |
| Distribution du jour moyen du mois de pointe                  | m3/j    | 367     | 366     | 402     | 442     | 487     | 535     | 590     |
| Distribution du jour moyen de la semaine de pointe            | m3/j    | 459     | 458     | 503     | 553     | 608     | 669     | 737     |
| Distribution du jour de pointe                                | m3/j    | 459     | 458     | 503     | 553     | 608     | 669     | 737     |
| Distribution du jour de pointe arrondie                       | m3/j    | 460     | 460     | 500     | 550     | 610     | 670     | 740     |
| Volume annuel                                                 | m3/an   | 111 768 | 111 383 | 122 385 | 134 550 | 148 001 | 162 874 | 179 319 |
| Volume annuel (arrondi retenu)                                | m3/an   | 112 000 | 111 000 | 122 000 | 135 000 | 148 000 | 163 000 | 179 000 |
| Rendement du réseau d'adduction                               |         | 100%    | 100%    | 100%    | 100%    | 100%    | 100%    | 100%    |
| Pertes journalières                                           | m3/j    | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| Production moyenne journalière                                | m3/j    | 306     | 305     | 335     | 369     | 405     | 446     | 491     |
| Production du jour moyen du mois de pointe                    | m3/j    | 367     | 366     | 402     | 442     | 487     | 535     | 590     |
| Production du jour moyen de la semaine de pointe              | m3/j    | 459     | 458     | 503     | 553     | 608     | 669     | 737     |
| Production du jour de pointe                                  | m3/j    | 459     | 458     | 503     | 553     | 608     | 669     | 737     |
| Production du jour de pointe arrondie                         | m3/j    | 460     | 460     | 500     | 550     | 610     | 670     | 740     |
| Volume annuel                                                 | m3/an   | 111 768 | 111 383 | 122 385 | 134 550 | 148 001 | 162 874 | 179 319 |
| Volume annuel (arrondi retenu)                                | m3/an   | 112 000 | 111 000 | 122 000 | 135 000 | 148 000 | 163 000 | 179 000 |

<sup>\*</sup>la population moyenne est calculée en prenant l'hypothèse que la population saisonnière est présente sur la commune 2 mois par an.

A l'horizon 2050, les besoins totaux en distribution de l'UDI de Montescot seront d'environ 179 000 m³/an pour un volume moyen journalier de 490 m³/j et un volume le jour de pointe de 740 m³/j.

### 9.1.2.6 BESOINS FUTURS CC SUD ROUSSILLON

| Besoins futurs CCSR            |       | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      | 2050      |
|--------------------------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Production moyenne journalière | m3/j  | 7 532     | 7 508     | 7 661     | 7 824     | 8 000     | 8 188     | 8 390     |
| Volume annuel                  | m3/an | 2 749 059 | 2 740 519 | 2 796 190 | 2 855 890 | 2 919 935 | 2 988 668 | 3 062 461 |
| Volume annuel (arrondi retenu) | m3/an | 2 749 000 | 2 741 000 | 2 796 000 | 2 856 000 | 2 920 000 | 2 989 000 | 3 062 000 |

A l'horizon 2050, les besoins totaux en production de la CC seront d'environ 3 062 000 m³/an pour un volume moyen journalier de 8 390 m³/j.

# 9.2 ADEQUATION DES INFRASTRUCTURES ACTUELLES AVEC LES BESOINS ACTUELS ET FUTURS

### 9.2.1 OUVRAGES DE CAPTAGE

### 9.2.1.1 **UDI** D'**A**LENYA

L'UDI d'Alénya est alimentée par le forage F2 Cami dels Ossous. Ce forage dispose d'une DUP en date du 26 septembre 2005 autorisant la collectivité à prélever pour le site du captage 60 m3/h et soit 1 200 m3/j.

Une comparaison des besoins futurs déterminés précédemment avec les volumes autorisés par la DUP a été effectuée. Les résultats de cette analyse sont présentés dans le tableau suivant.

| Alénya                                |      |       |       |       |       |       |       |       |  |
|---------------------------------------|------|-------|-------|-------|-------|-------|-------|-------|--|
| Adéquation besoins / Volumes autoris  | sés  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |  |
| Débit de prélèvement maximum autorisé | m3/j | 1 200 | 1 200 | 1 200 | 1 200 | 1 200 | 1 200 | 1 200 |  |
| Besoins en production jour de pointe  | m3/j | 988   | 1 068 | 1 111 | 1 156 | 1 203 | 1 252 | 1 304 |  |

Le débit de prélèvement autorisé ne permettra plus de répondre aux besoins futurs de l'UDI à partir de l'horizon 2040.

### 9.2.1.2 UDI DE CORNEILLA DEL VERCOL

L'UDI de Corneilla-del-Vercol est alimentée par le forage F1 Village. Ce forage dispose d'un arrêté d'autorisation en date du 26 septembre 2005 autorisant la collectivité à prélever pour le site du captage 30 m3/h et soit 600 m3/j.

Une comparaison des besoins futurs déterminés précédemment avec les volumes autorisés par la DUP a été effectuée. Les résultats de cette analyse sont présentés dans le tableau suivant.

| Corneilla-del-Vercol                  |      |      |      |      |      |      |      |     |  |  |
|---------------------------------------|------|------|------|------|------|------|------|-----|--|--|
| Adéquation besoins / Volumes autoris  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |     |  |  |
| Débit de prélèvement maximum autorisé | m3/j | 600  | 600  | 600  | 600  | 600  | 600  | 600 |  |  |
| Besoins en production jour de pointe  | m3/j | 636  | 688  | 721  | 757  | 795  | 834  | 876 |  |  |

Le débit de prélèvement autorisé ne permet d'ores et déjà plus de répondre aux besoins de l'UDI.

### 9.2.1.3 <u>UDI DE SAINT-CYPRIEN – LATOUR—BAS-ELNE</u>

L'UDI de Saint-Cyprien – Latour-Bas-Elne est alimentée par les forages de Camp Hortes (5 forages), F3 Camp del Foun et Serralongue Ouest. Ces forages disposent d'arrêtés de DUP autorisant la collectivité à prélever pour l'ensemble des sites 17 120 m3/j.

Une comparaison des besoins futurs déterminés précédemment avec les volumes autorisés par les DUP a été effectuée. Les résultats de cette analyse sont présentés dans le tableau suivant.

| Saint-Cyprien - Latour-Bas-Elne       |      |        |        |        |        |        |        |        |  |  |  |
|---------------------------------------|------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| Adéquation besoins / Volumes autoris  | 2020 | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |        |  |  |  |
| Débit de prélèvement maximum autorisé | m3/j | 17 120 | 17 120 | 17 120 | 17 120 | 17 120 | 17 120 | 17 120 |  |  |  |
| Besoins en production jour de pointe  | m3/i | 11 087 | 10 685 | 10 783 | 10 890 | 11 005 | 11 129 | 11 263 |  |  |  |

Le débit de prélèvement autorisé permettra de répondre aux besoins futurs de l'UDI jusqu'à l'horizon 2050.

### 9.2.1.4 **UDI DE THEZA**

L'UDI de Théza est alimentée par le forage du Village. Ce forage dispose d'un arrêté de DUP en date du 5 juin 2002 autorisant la collectivité à prélever pour le site du captage 30 m3/h et soit 360 m3/j.

Une comparaison des besoins futurs déterminés précédemment avec les volumes autorisés par la DUP a été effectuée. Les résultats de cette analyse sont présentés dans le tableau suivant.

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 94 / 118
Rapport d'étude Version c

| Adéquation besoins / Volumes autorisés |      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|------|
| Débit de prélèvement maximum autorisé  | m3/j | 360  | 360  | 360  | 360  | 360  | 360  | 360  |
| Besoins en production jour de pointe   | m3/j | 400  | 489  | 512  | 537  | 563  | 590  | 619  |

Le débit de prélèvement autorisé ne permet d'ores et déjà plus de répondre aux besoins de l'UDI.

### 9.2.1.5 UDI DE MONTESCOT

L'UDI de Montescot est alimentée directement par un achat d'eau. La convention de vente d'eau ne mentionne aucun volume d'achat d'eau maximal.

#### 9.2.1.6 ENSEMBLE DES UDI

### 9.2.1.6.1 Volumes annuels

Faisant suite à l'étude des volumes prélevables des nappes plio-quaternaires de la plaine du Roussillon, la DDTM est actuellement en cours de révision des autorisations réglementaires des différentes collectivités prélevant dans la nappe Pliocène.

Les dernières discussions en cours entre la CC Sud Roussillon et les services de l'Etat évoquent une révision des autorisations sur les forages suivants :

- UDI Alénya
  - √ F2 Cami dels Ossous
- UDI Corneilla-del-Vercol
  - √ F1 Village Corneilla-Del-Vercol
- UDI Saint-Cyprien, Latour-Bas-Elne
  - √ F2 CAMP HORTES -CAM de la FOUN
  - √ F6 CAMP HORTES -CAM del FOUN
  - √ F5 CAMP HORTES -CAM de la FOUN
  - √ F8 CAMP HORTES -CAM de la FOUN (ancien F4bis)
  - √ F7 CAMP HORTES -CAM de la FOUN
  - √ SERRALONGUE OUEST -AL MOLY
  - √ F3bis FORAGE PROFOND -CAM de la FOUN
  - √ Forage El Molinas (en projet)
- UDI de Théza
  - √ Forage Village Théza

### à hauteur de 1 243 215 m3/an.

La répartition des besoins est ainsi décrite ci-après.

| CC Sud Roussillon                                   |       |           |           |           |           |           |           |           |  |  |  |
|-----------------------------------------------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|
| Adéquation besoins / Futur droit de prélèver        | nent  | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      | 2050      |  |  |  |
| Volume autorisé total                               | m3/an | 4 143 215 | 4 143 215 | 4 143 215 | 4 143 215 | 4 143 215 | 4 143 215 | 4 143 215 |  |  |  |
| Dont futur droit de prélèvement pliocène            | m3/an | 1 243 215 | 1 243 215 | 1 243 215 | 1 243 215 | 1 243 215 | 1 243 215 | 1 243 215 |  |  |  |
| Dont volumes autorisés quaternaire                  | m3/an | 2 900 000 | 2 900 000 | 2 900 000 | 2 900 000 | 2 900 000 | 2 900 000 | 2 900 000 |  |  |  |
| Besoins en production total annuel (hors Montescot) | m3/an | 2 637 291 | 2 629 136 | 2 673 805 | 2 721 341 | 2 771 935 | 2 825 795 | 2 883 141 |  |  |  |

Les besoins futurs annuels sont ainsi en adéquation avec les capacités des ressources actuelles.

### 9.2.1.6.2 Volumes journaliers

Nous envisagerons le cas le plus défavorable, pour lequel l'ensemble des pointes journalières serait observé le même jour de l'année et considérons les interconnexions entre les différentes UDI.

| CC Sud Roussillon                     |      |        |        |        |        |        |        |        |  |  |  |
|---------------------------------------|------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| Adéquation besoins / Volumes autor    | 2020 | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |        |  |  |  |
| Débit de prélèvement maximum autorisé | m3/j | 19 280 | 19 280 | 19 280 | 19 280 | 19 280 | 19 280 | 19 280 |  |  |  |
| Besoins en production jour de pointe  | m3/j | 13 112 | 12 930 | 13 128 | 13 339 | 13 565 | 13 805 | 14 062 |  |  |  |

### **ENTECH** Ingénieurs Conseils

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 95 / 118
Rapport d'étude Version c

En conclusion, les volumes autorisés seront suffisants en pointe pour subvenir aux besoins futurs de la communauté de communes, quel que soit l'horizon.

### 9.2.2 Unites de traitement

Les aménagements à réaliser concernant le traitement de l'eau sur les différentes UDI sont les suivants :

|                                  | Alénya                                                                    |                                                       |
|----------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|
| Paramètres                       | Désordres observés                                                        | Aménagement à réaliser                                |
| Chlore                           | Taux insuffisant en sortie de réservoir et dans le réseau de distribution | Recalibrer le système de désinfection                 |
| Température                      | Dépassements limités de la référence de qualité                           | -                                                     |
|                                  | Théza                                                                     |                                                       |
| Paramètres                       | Désordres observés                                                        | Aménagement à réaliser                                |
| Chlore                           | Taux insuffisant en sortie de réservoir et dans le réseau de distribution | Recalibrer le système de désinfection                 |
| Température                      | Dépassements limités de la référence de qualité                           | -                                                     |
|                                  | Latour Bas Elne- Saint C                                                  | yprien                                                |
| Paramètres                       | Désordres observés                                                        | Aménagement à réaliser                                |
| Chlore                           | Taux insuffisant en sortie de réservoir et dans le réseau de distribution | Recalibrer le système de désinfection                 |
| Plomb/Equilibre calco-carbonique | Potentiel de dissolution très élevé<br>Eaux agressives                    | Mettre en place un système de<br>remise à l'équilibre |
| Température                      | Dépassements faibles de la référence de qualité                           | -                                                     |
| Pesticides                       | 6 dépassements de la limite de qualité sur<br>6 884 analyses              | Continuer le suivi régulier du paramètre              |

### 9.2.3 CAPACITES DE STOCKAGE

### 9.2.3.1 UDI D'ALENYA

Le réservoir d'Alenya dessert uniquement la commune d'Alenya. Une autonomie suffisante correspondrait à une autonomie de 24h le jour moyen du mois de pointe.

Le tableau suivant présente l'autonomie du réservoir d'Alenya en moyenne et en pointe.

| Autonomie du réservoir d'Alenya                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045  | 2050  |
|------------------------------------------------|------|------|------|------|------|-------|-------|
| Volume total (m3)                              | 200  | 200  | 200  | 200  | 200  | 200   | 200   |
| Réserve incendie (m3)                          | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| Volume utile (m3)                              | 200  | 200  | 200  | 200  | 200  | 200   | 200   |
| Besoins du jour moyen (m3/j)                   | 649  | 712  | 741  | 771  | 802  | 835   | 869   |
| Autonomie moyenne (h)                          | 7    | 7    | 6    | 6    | 6    | 6     | 6     |
| Besoins du jour moyen du mois de pointe (m3/j) | 770  | 854  | 889  | 925  | 962  | 1 002 | 1 043 |
| Autonomie du jour moyen du mois de pointe (h)  | 6    | 6    | 5    | 5    | 5    | 5     | 5     |

Ainsi, nous pouvons observer au sein du tableau précédent que le réservoir d'Alenya présente :

- Une autonomie moyenne d'ores et déjà insuffisante qui atteindra 6 heures en 2050,
- Une autonomie le jour moyen du mois de pointe d'ores et déjà insuffisante qui atteindra 5 heures en 2050.

Le déficit de stockage en pointe à l'horizon 2050 sera de 843 m<sup>3</sup>.

### 9.2.3.2 UDI DE CORNEILLA DEL VERCOL

Le réservoir de Corneilla-del-Vercol dessert uniquement la commune de Corneilla-del-Vercol. Une autonomie suffisante correspondrait à une autonomie de 24h le jour moyen du mois de pointe.

Le tableau suivant présente l'autonomie du réservoir de Corneilla-del-Vercol en moyenne et en pointe.

| Autonomie du réservoir de Corneilla-del-Ve     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------------------|------|------|------|------|------|------|------|
| Volume total (m3)                              | 200  | 200  | 200  | 200  | 200  | 200  | 200  |
| Réserve incendie (m3)                          | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Volume utile (m3)                              | 200  | 200  | 200  | 200  | 200  | 200  | 200  |
|                                                |      |      |      |      |      |      |      |
| Besoins du jour moyen (m3/j)                   | 488  | 491  | 515  | 541  | 568  | 596  | 626  |
| Autonomie moyenne (h)                          | 10   | 10   | 9    | 9    | 8    | 8    | 8    |
|                                                |      |      |      |      |      |      |      |
| Besoins du jour moyen du mois de pointe (m3/j) | 576  | 590  | 618  | 649  | 681  | 715  | 751  |
| Autonomie du jour moyen du mois de pointe (h)  | 8    | 8    | 8    | 7    | 7    | 7    | 6    |

Ainsi, nous pouvons observer au sein du tableau précédent que le réservoir de Corneilla-del-Vercol présente :

- Une autonomie moyenne d'ores et déjà insuffisante qui atteindra 8 heures en 2050,
- Une autonomie le jour moyen du mois de pointe d'ores et déjà insuffisante qui atteindra 6 heures en 2050.

Le déficit de stockage en pointe à l'horizon 2050 sera de 551 m<sup>3</sup>.

### 9.2.3.3 <u>UDI DE SAINT-CYPRIEN – LATOUR—BAS-ELNE</u>

Le réservoir de Saint-Cyprien dessert les communes de Saint-Cyprien et Latour-Bas-Elne. Une autonomie suffisante correspondrait à une autonomie de 24h le jour moyen du mois de pointe.

Le tableau suivant présente l'autonomie du réservoir de Saint-Cyprien en moyenne et en pointe.

| Autonomie du réservoir de St-Cyprien           | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Volume total (m3)                              | 6 000 | 6 000 | 6 000 | 6 000 | 6 000 | 6 000 | 6 000 |
| Réserve incendie (m3)                          | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Volume utile (m3)                              | 6 000 | 6 000 | 6 000 | 6 000 | 6 000 | 6 000 | 6 000 |
|                                                |       |       |       |       |       |       |       |
| Besoins du jour moyen (m3/j)                   | 5 745 | 5 624 | 5 675 | 5 731 | 5 792 | 5 857 | 5 928 |
| Autonomie moyenne (h)                          | 25    | 26    | 25    | 25    | 25    | 25    | 24    |
|                                                |       |       |       |       |       |       |       |
| Besoins du jour moyen du mois de pointe (m3/j) | 9 472 | 8 998 | 9 081 | 9 170 | 9 267 | 9 372 | 9 485 |
| Autonomie du jour moyen du mois de pointe (h)  | 15    | 16    | 16    | 16    | 16    | 15    | 15    |

Ainsi, nous pouvons observer au sein du tableau précédent que le réservoir de Saint-Cyprien présente :

- Une autonomie moyenne suffisante qui atteindra 24 heures en 2050,
- Une autonomie le jour moyen du mois de pointe d'ores et déjà insuffisante qui atteindra 15 heures en 2050.

Le déficit de stockage en pointe à l'horizon 2050 sera de 3 485 m<sup>3</sup>.

#### 9.2.3.4 UDI DE THEZA

Le réservoir de Théza dessert uniquement la commune de Théza. Une autonomie suffisante correspondrait à une autonomie de 24h le jour moyen du mois de pointe.

Le tableau suivant présente l'autonomie du réservoir de Théza en moyenne et en pointe.

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 97 / 118
Rapport d'étude Version c

| Autonomie du réservoir de Théza                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------------------|------|------|------|------|------|------|------|
| Volume total (m3)                              | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
| Réserve incendie (m3)                          | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Volume utile (m3)                              | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
|                                                |      |      |      |      |      |      |      |
| Besoins du jour moyen (m3/j)                   | 344  | 376  | 394  | 413  | 433  | 454  | 476  |
| Autonomie moyenne (h)                          | 7    | 6    | 6    | 6    | 6    | 5    | 5    |
|                                                |      |      |      |      |      |      |      |
| Besoins du jour moyen du mois de pointe (m3/j) | 365  | 414  | 434  | 454  | 476  | 499  | 524  |
| Autonomie du jour moyen du mois de pointe (h)  | 7    | 6    | 6    | 5    | 5    | 5    | 5    |

Ainsi, nous pouvons observer au sein du tableau précédent que le réservoir de Théza présente :

- Une autonomie moyenne d'ores et déjà insuffisante qui atteindra 5 heures en 2050,
- Une autonomie le jour moyen du mois de pointe d'ores et déjà insuffisante qui atteindra 4 heures en 2050.

Le déficit de stockage en pointe à l'horizon 2050 sera de 424 m<sup>3</sup>.

### 9.2.3.5 UDI DE MONTESCOT

Le réservoir de l'UDI de Montescot n'est pas utilisé et la commune est directement desservie par le réseau de la commune d'Elne.

### 9.2.3.6 ENSEMBLE DES UDI

Le déficit de stockage en pointe à l'horizon 2050 sera au global de 5 300 m<sup>3</sup>.

### 9.2.4 STATIONS DE REPRISE / SURPRESSION

### 9.2.4.1 **UDI** D'**A**LENYA

L'adéquation de la station de reprise au niveau du réservoir d'Alénya a été effectuée dans le cas de deux pompes en fonctionnement. Cette adéquation a été réalisée en considérant un fonctionnement de chaque pompe à son débit et à sa HMT nominaux.

| Surpression d'Alénya                                               | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Capacités horaires de deux pompes (m3/h)                           | 80   | 80    | 80    | 80    | 80    | 80    | 80    |
| Besoins en production jour moyen (m3/j)                            | 649  | 712   | 741   | 771   | 802   | 835   | 869   |
| Temps de fonctionnement moyen des pompes (h)                       | 8    | 9     | 9     | 10    | 10    | 10    | 11    |
| Besoins en production jour moyen de la semaine de pointe (m3/j)    | 941  | 1 068 | 1 111 | 1 156 | 1 203 | 1 252 | 1 304 |
| Temps de fonctionnement des pompe jour moyen semaine de pointe (h) | 12   | 13    | 14    | 14    | 15    | 16    | 16    |
| Besoins en production jour de pointe (m3/j)                        | 988  | 1 068 | 1 111 | 1 156 | 1 203 | 1 252 | 1 304 |
| Temps de fonctionnement des pompe jour de pointe (h)               | 12   | 13    | 14    | 14    | 15    | 16    | 16    |

Il apparait qu'en situation future, les pompes de la surpression seront en mesure de fournir le volume demandé en moyenne et en pointe (moins de 20h de fonctionnement pour une pompe).

Cette adéquation a été confirmée par la modélisation.

### 9.2.4.2 UDI DE CORNEILLA DEL VERCOL

L'adéquation de la station de reprise au niveau du réservoir de Corneilla-del-Vercol a été effectuée dans le cas de deux pompes en fonctionnement. Cette adéquation a été réalisée en considérant un fonctionnement de chaque pompe à son débit et à sa HMT nominaux.

**ENTECH Ingénieurs Conseils** 

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 98 / 118
Rapport d'étude Version c

| Surpression de Corneilla-del-Vercol                                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------------------------------|------|------|------|------|------|------|------|
| Capacités horaires de deux pompes (m3/h)                           | 70   | 70   | 70   | 70   | 70   | 70   | 70   |
|                                                                    |      |      |      |      |      |      |      |
| Besoins en production jour moyen (m3/j)                            | 488  | 491  | 515  | 541  | 568  | 596  | 626  |
| Temps de fonctionnement moyen des pompes (h)                       | 7    | 7    | 7    | 8    | 8    | 9    | 9    |
|                                                                    |      |      |      |      |      |      |      |
| Besoins en production jour moyen de la semaine de pointe (m3/j)    | 598  | 590  | 618  | 649  | 681  | 715  | 751  |
| Temps de fonctionnement des pompe jour moyen semaine de pointe (h) | 9    | 8    | 9    | 9    | 10   | 10   | 11   |
|                                                                    |      |      |      |      |      |      |      |
| Besoins en production jour de pointe (m3/j)                        | 636  | 688  | 721  | 757  | 795  | 834  | 876  |
| Temps de fonctionnement des pompe jour de pointe (h)               | 9    | 10   | 10   | 11   | 11   | 12   | 13   |

Il apparait qu'en situation future, les pompes de la surpression seront en mesure de fournir le volume demandé en moyenne et en pointe (moins de 20h de fonctionnement pour une pompe).

Cette adéquation a été confirmée par la modélisation.

#### 9.2.4.3 UDI DE SAINT-CYPRIEN - LATOUR-BAS-ELNE

L'adéquation de la station de reprise au niveau du réservoir de Saint-Cyprien a été effectuée dans le cas de deux pompes en fonctionnement. Cette adéquation a été réalisée en considérant un fonctionnement de chaque pompe à son débit et à sa HMT nominaux.

| Surpression de Saint Cyprien                                       | 2020   | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |
|--------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|
| Capacités horaires de deux pompes (m3/h)                           | 1000   | 1000   | 1000   | 1000   | 1000   | 1000   | 1000   |
|                                                                    |        |        |        |        |        |        |        |
| Besoins en production jour moyen (m3/j)                            | 5 745  | 5 624  | 5 675  | 5 731  | 5 792  | 5 857  | 5 928  |
| Temps de fonctionnement moyen des pompes (h)                       | 6      | 6      | 6      | 6      | 6      | 6      | 6      |
|                                                                    |        |        |        |        |        |        |        |
| Besoins en production jour moyen de la semaine de pointe (m3/j)    | 10 243 | 10 123 | 10 216 | 10 317 | 10 425 | 10 543 | 10 670 |
| Temps de fonctionnement des pompe jour moyen semaine de pointe (h) | 10     | 10     | 10     | 10     | 10     | 11     | 11     |
|                                                                    |        |        |        |        |        |        |        |
| Besoins en production jour de pointe (m3/j)                        | 11 087 | 10 685 | 10 783 | 10 890 | 11 005 | 11 129 | 11 263 |
| Temps de fonctionnement des pompe jour de pointe (h)               | 11     | 11     | 11     | 11     | 11     | 11     | 11     |

Il apparait qu'en situation future, les pompes de la surpression seront en mesure de fournir le volume demandé en moyenne et en pointe (moins de 20h de fonctionnement pour une pompe).

Cette adéquation a été confirmée par la modélisation.

#### 9.2.4.4 **UDI DE THEZA**

L'adéquation de la station de reprise au niveau du réservoir de Théza a été effectuée dans le cas de deux pompes en fonctionnement. Cette adéquation a été réalisée en considérant un fonctionnement de chaque pompe à son débit et à sa HMT nominaux.

| Surpression de Théza                                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------------------------------|------|------|------|------|------|------|------|
| Capacités horaires de deux pompes (m3/h)                           | 48   | 48   | 48   | 48   | 48   | 48   | 48   |
|                                                                    |      |      |      |      |      |      |      |
| Besoins en production jour moyen (m3/j)                            | 344  | 376  | 394  | 413  | 433  | 454  | 476  |
| Temps de fonctionnement moyen des pompes (h)                       | 7    | 8    | 8    | 9    | 9    | 9    | 10   |
|                                                                    |      |      |      |      |      |      |      |
| Besoins en production jour moyen de la semaine de pointe (m3/j)    | 371  | 451  | 473  | 496  | 520  | 545  | 571  |
| Temps de fonctionnement des pompe jour moyen semaine de pointe (h) | 8    | 9    | 10   | 10   | 11   | 11   | 12   |
|                                                                    |      |      |      |      |      |      |      |
| Besoins en production jour de pointe (m3/j)                        | 400  | 489  | 512  | 537  | 563  | 590  | 619  |
| Temps de fonctionnement des pompe jour de pointe (h)               | 8    | 10   | 11   | 11   | 12   | 12   | 13   |

Il apparait qu'en situation future, les pompes de la surpression seront en mesure de fournir le volume demandé en moyenne et en pointe (moins de 20h de fonctionnement pour une pompe).

Cette adéquation a été confirmée par la modélisation.

### 9.2.5 RESEAUX

#### 9.2.5.1 RENDEMENT

Comme nous l'avons vu précédemment, les rendements actuels des réseaux de chacune des UDI de la communauté de communes Sud Roussillon sont compris entre 73 et 87%.

Ce rendement est supérieur au rendement imposé par le décret du 27 janvier 2012.

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Rapport d'étude Version c En situation future, un rendement de 85% a été considéré à partir de l'horizon 2025.

Un plan de renouvellement des réseaux a été réalisé dans le cadre du présent schéma directeur afin de permettre l'augmentation / la conservation des rendements sur chacune des UDI.

### 9.2.5.2 FUITES

Une recherche de fuites est réalisée chaque année sur la CCSR, en complément des renouvellements de réseaux réalisés.

### 9.2.5.3 MODELISATION EN SITUATION ACTUELLE

Le rapport de modélisation est annexé à la présente étude. Les principales conclusions de la modélisation en situation actuelle sont les suivantes :

- En période de pointe sur la CC Sud Roussillon, aucun secteur ne présente des pressions insuffisantes. A noter des pressions supérieures à 5 bars sur la commune de Montescot, mais restant inférieures à 5,5 bars ce qui est limite mais acceptable.
- En période de faible consommation, plusieurs secteurs disposent de pressions supérieures à 5 bars, sur Montescot et Saint Cyprien. Ces pressions restent néanmoins inférieures à 5,5 bars ce qui est limite mais acceptable.
- Aucune variation de pression supérieure à 2 bars n'est observée au cours de la journée de pointe.
- En périodes de pointe et de faible consommation, les vitesses sur le réseau de distribution de la CC Sud Roussillon sont toutes inférieures à 1,5 m/s soit des vitesses satisfaisantes, hormis sur l'adduction en amiante ciment DN80 du réservoir de Théza, qui rencontre des vitesses de 2,2 m/s.
- Les temps de séjour sur la CC apparaissent élevés au niveau de plusieurs secteurs.

### 9.2.5.4 MODELISATION EN SITUATION FUTURE

Les conclusions concernant les pressions et les vitesses sont sensiblement identiques à la situation actuelle. A noter également que malgré la modélisation de l'interconnexion, au cours de la journée de pointe en situation future, les réservoirs de Corneilla et d'Alenya se vident au cours de la journée du fait de leur sous-dimensionnement en volume.

### 10 ETUDE DES RESSOURCES EN EAU POTENTIELLES

### 10.1 REFLEXION SUR LES ECONOMIES D'EAU POTABLE

### 10.1.1 LES ECONOMIES SUR LES CONSOMMATIONS D'EAU POTABLE

### 10.1.1.1 LES CONSOMMATIONS COMMUNALES

Le tableau suivant synthétise l'évolution des consommations communales déterminées précédemment.

|                                | 2016                          | 2017             | 2018    | 2019    | 2020    |  |  |  |  |
|--------------------------------|-------------------------------|------------------|---------|---------|---------|--|--|--|--|
|                                |                               | Alenya           |         |         |         |  |  |  |  |
| Consommation communale - Rôles | 464                           | 4 058            | 7 150   | 9 612   | 10 489  |  |  |  |  |
|                                | Corne                         | eilla-Del-Vercol |         |         |         |  |  |  |  |
| Consommation communale - Rôles | 404                           | 436              | 500     | 650     | 360     |  |  |  |  |
|                                | Saint-Cyprien-Latour-Bas-Elne |                  |         |         |         |  |  |  |  |
| Consommation communale - Rôles | 118 707                       | 103 091          | 123 002 | 106 265 | 90 607  |  |  |  |  |
|                                |                               | Theza            |         |         |         |  |  |  |  |
| Consommation communale - Rôles | 3 506                         | 2 986            | 4 700   | 5 346   | 4 075   |  |  |  |  |
|                                |                               | Montescot        |         |         |         |  |  |  |  |
| Consommation communale - Rôles | 0                             | 0                | 0       | 0       | 0       |  |  |  |  |
|                                |                               | Total            |         |         |         |  |  |  |  |
| Consommation communale - Rôles | 123 081                       | 110 571          | 135 352 | 121 873 | 105 531 |  |  |  |  |

Nous pouvons observer sur le tableau précédent que les consommations communales ont globalement diminué de 14% sur les cinq dernières années.

Pour l'année 2020, les consommations communales représentent environ 105 530 m3/an, soit environ 5% de la consommation totale.

Cette proportion est usuelle pour les collectivités de même taille. Il apparait donc difficile de réaliser des économies sur les consommations communales.

### 10.1.1.1.1 Optimisation des espaces verts

Au sein des consommations communales, il existe plusieurs espaces verts.

Dans la mesure du possible, l'utilisation de l'arrosage au goutte à goutte est préconisée.

### 10.1.1.1.2 Optimisation des bâtiments et des points d'eau publics

Il peut être envisagé la mise en place d'appareils hydro-économes sur les équipements publics type sanitaire pour limiter les débits d'eau et bouton poussoir sur les robinets de prélèvement type fontaine pour éviter les robinets mal fermés et les pertes d'eau.

Les économies envisageables grâce à ce type d'équipements sont de l'ordre de 20 %.

### 10.1.1.2 LES CONSOMMATIONS DES PARTICULIERS

En situation actuelle (année 2020), les ratios moyens de consommation pour les abonnés domestiques sont compris entre 120 et 180 l/j/habitant.

Les UDI de Corneilla-del-Vercol et Saint-Cyprien / Latour-Bas-Elne ont les ratios de consommation les plus élevés soit respectivement 157 et 180 l/j/habitant.

En situation future, les ratios retenus correspondent aux ratios actuels par sécurité.

Des démarches de sensibilisation aux économies d'eau peuvent ainsi être envisagées sur ces deux UDI. Ces démarches de sensibilisation pourraient permettre de diminuer les consommations et donc les prélèvements au niveau des ressources de la communauté de communes.

Il est à noter que les gains liés à la diminution des consommations sont incertains. En effet, il est difficile de garantir une baisse de consommation chez les particuliers, surtout pour de l'habitat

existant (possibilité pour les nouvelles habitations d'inciter les nouveaux habitants ainsi que les aménageurs à installer des appareils plus économes en eau).

De plus, les ratios de consommation élevés correspondent à la typologie de communauté de communes (urbaine et touristique).

Ainsi, il n'y a donc pas d'économie importante envisageable pour les consommations de particuliers.

### 10.1.1.3 LES CONSOMMATIONS NON DOMESTIQUES

Le tableau suivant présente l'évolution des volumes consommés par les consommateurs non domestiques (source RPQS).

|                                  | 2016      | 2017              | 2018      | 2019      | 2020      |
|----------------------------------|-----------|-------------------|-----------|-----------|-----------|
|                                  |           | Alenya            |           |           |           |
| Consommation comptabilisée       | 174 074   | 194 570           | 199 392   | 206 120   | 203 105   |
| Dont consommation domestique     | 166 951   | 186 604           | 192 330   | 198 620   | 196 805   |
| Dont consommation non domestique | 7 123     | 7 966             | 7 062     | 7 500     | 6 300     |
|                                  | Corne     | eilla-Del-Vercol  |           |           |           |
| Consommation comptabilisée       | 108 711   | 118 403           | 109 431   | 127 857   | 137 630   |
| Dont consommation domestique     | 104 813   | 113 390           | 105 041   | 116 239   | 134 541   |
| Dont consommation non domestique | 3 898     | 5 013             | 4 390     | 11 618    | 3 089     |
|                                  | Saint-Cyp | rien-Latour-Bas-E | Ine       |           |           |
| Consommation comptabilisée       | 1 514 180 | 1 622 339         | 1 515 864 | 1 624 665 | 1 726 898 |
| Dont consommation domestique     | 1 401 137 | 1 527 563         | 1 396 141 | 1 546 791 | 1 608 116 |
| Dont consommation non domestique | 113 043   | 94 776            | 119 723   | 77 874    | 118 782   |
|                                  |           | Theza             |           |           |           |
| Consommation comptabilisée       | 83 165    | 84 405            | 88 122    | 98 032    | 103 451   |
| Dont consommation domestique     | 80 605    | 79 882            | 85 233    | 94 702    | 100 244   |
| Dont consommation non domestique | 2 560     | 4 523             | 2 889     | 3 330     | 3 207     |
|                                  |           | Montescot         |           |           |           |
| Consommation comptabilisée       | 78 068    | 85 289            | 77 353    | 80 828    | 80 278    |
| Dont consommation domestique     | 74 791    | 82 554            | 74 114    | 78 189    | 78 211    |
| Dont consommation non domestique | 3 277     | 2 735             | 3 239     | 2 639     | 2 067     |
|                                  |           | Total             |           |           |           |
| Consommation comptabilisée       | 1 958 198 | 2 105 006         | 1 990 162 | 2 137 502 | 2 251 362 |
| Dont consommation domestique     | 1 828 297 | 1 989 993         | 1 852 859 | 2 034 541 | 2 117 917 |
| Dont consommation non domestique | 129 901   | 115 013           | 137 303   | 102 961   | 133 445   |

Les consommations des gros consommateurs apparaissent variables suivant les années (comprises entre 103 000 et 137 000 m3/an.

Une opération de sensibilisation pourrait être envisagée par la communauté de communes concernant ces abonnés.

### 10.1.2 LES ECONOMIES D'EAU POTABLE SUR LE RESEAU

### 10.1.2.1 AMELIORATION DU RENDEMENT DE RESEAU

En situation future, nous avons retenu une augmentation du rendement pour atteindre 85% à horizon 2025. Ce rendement étant déjà élevé, il semble difficilement envisageable de l'augmenter de manière plus importante afin de diminuer les volumes produits.

### 10.1.2.2 MAITRISE DES CONSOMMATIONS NON COMPTABILISEES

Le tableau suivant présente l'évolution des consommations non facturées au cours des 7 dernières années.

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 102 / 118
Rapport d'étude Version c

|                                    | 2014                               | 2015      | 2016            | 2017   | 2018   | 2019   | 2020   |  |  |
|------------------------------------|------------------------------------|-----------|-----------------|--------|--------|--------|--------|--|--|
|                                    |                                    | UD        | l Alenya        |        |        |        |        |  |  |
| Consommation sans comptage (m3/an) | 789                                | 30        | 320             | 30     | 150    | 0      | 0      |  |  |
| Volume de service (m3/an)          | 2 536                              | 2 406     | 2 423           | 2 536  | 2 423  | 1 955  | 1 955  |  |  |
| Volume total non facturé (m3/an)   | 3 325                              | 2 436     | 2 743           | 2 566  | 2 573  | 1 955  | 1 955  |  |  |
|                                    |                                    | UDI Corne | illa-Del-Vercol |        |        |        |        |  |  |
| Consommation sans comptage (m3/an) | 3 500                              | 3 300     | 3 300           | 2 750  | 3 100  | 0      | 0      |  |  |
| Volume de service (m3/an)          | 1 118                              | 1 818     | 1 821           | 1 821  | 1 961  | 1 821  | 1 821  |  |  |
| Volume total non facturé (m3/an)   | 4 618                              | 5 118     | 5 121           | 4 571  | 5 061  | 1 821  | 1 821  |  |  |
|                                    | UDI Saint-Cyprien/ Latour-Bas-Elne |           |                 |        |        |        |        |  |  |
| Consommation sans comptage (m3/an) | 22 073                             | 7 690     | 12 654          | 11 690 | 11 450 | 0      | 0      |  |  |
| Volume de service (m3/an)          | 10 077                             | 10 255    | 10 147          | 10 147 | 10 147 | 10 147 | 10 147 |  |  |
| Volume total non facturé (m3/an)   | 32 150                             | 17 945    | 22 801          | 21 837 | 21 597 | 10 147 | 10 147 |  |  |
|                                    |                                    | UD        | l Theza         |        |        |        |        |  |  |
| Consommation sans comptage (m3/an) | 680                                | 710       | 400             | 150    | 150    | 0      | 0      |  |  |
| Volume de service (m3/an)          | 951                                | 1651      | 1705            | 1705   | 1705   | 1705   | 1705   |  |  |
| Volume total non facturé (m3/an)   | 1 631                              | 2 361     | 2 105           | 1 855  | 1 855  | 1 705  | 1 705  |  |  |
|                                    |                                    | UDI N     | Iontescot       |        |        |        |        |  |  |
| Consommation sans comptage (m3/an) | 680                                | 420       | 270             | 270    | 270    | 719    | 200    |  |  |
| Volume de service (m3/an)          | 705                                | 705       | 719             | 719    | 719    | 3 628  | 719    |  |  |
| Volume total non facturé (m3/an)   | 1 385                              | 1 125     | 989             | 989    | 989    | 4 347  | 919    |  |  |
|                                    |                                    |           | OTAL            |        |        |        |        |  |  |
| Consommation sans comptage (m3/an) | 27 722                             | 12 150    | 16 944          | 14 890 | 15 120 | 719    | 200    |  |  |
| Volume de service (m3/an)          | 15 387                             | 16 835    | 16 815          | 16 928 | 16 955 | 19 256 | 16 347 |  |  |
| Volume total non facturé (m3/an)   | 43 109                             | 28 985    | 33 759          | 31 818 | 32 075 | 19 975 | 16 547 |  |  |

Les consommations non facturées ont fortement diminué au cours des sept dernières années et représentent environ 0,7% des volumes consommés totaux.

Les consommations non facturées semblent ainsi très raisonnables sur l'ensemble de la communauté de communes.

### 10.1.3 SYNTHESE

Il semble ainsi qu'il y ait peu de leviers d'actions concernant les économies d'eau sur la communauté de communes, hormis des sensibilisations au cas par cas (abonnés non domestiques, gros consommateurs...).

### 10.2 AUGMENTATION DU PRELEVEMENT EXISTANT

Afin de subvenir aux besoins futurs des différentes UDI, des prélèvements annuels plus élevés au sein du guaternaire qu'actuellement devront être effectués.

|                                                 | Nappe<br>concernée | 2014         | 2015            | 2016      | 2017      | 2018      | 2019      | 2020      |
|-------------------------------------------------|--------------------|--------------|-----------------|-----------|-----------|-----------|-----------|-----------|
|                                                 |                    | Ų            | JDI Alénya      |           |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | 253 342      | 232 843         | 246 902   | 269 308   | 254 672   | 238 875   | 234 405   |
| Dont F2 Cami dels Ossous                        | Pliocène           | 253 342      | 232 843         | 246 902   | 269 308   | 254 672   | 238 875   | 234 405   |
|                                                 |                    | UDI Cor      | neilla-Del-Verc | ol        |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | 137 318      | 143 092         | 139 462   | 138 700   | 143 485   | 159 349   | 177 974   |
| Dont F1 Village Corneilla-Del-Vercol            | Pliocène           | 137 318      | 143 092         | 139 462   | 138 700   | 143 485   | 159 349   | 177 974   |
|                                                 |                    | UDI Saint-Cy | prien, Latour-B | as-⊟ne    |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | 1 809 380    | 1 985 612       | 2 000 483 | 1 995 777 | 2 009 050 | 2 126 612 | 2 099 936 |
| Dont F2 Camp Hortes-Cam del Foun                | Quaternaire        | 281 938      | 292 903         | 228 493   | 348 906   | 364 438   | 326 360   | 293 083   |
| Dont F6 Camp Hortes-Cam del Foun                | Quaternaire        | 303 901      | 384 976         | 381 129   | 337 355   | 306 212   | 227 238   | 362 854   |
| Dont F5 Camp Hortes-Cam del Foun                | Quaternaire        | 110 987      | 327 772         | 417 074   | 357 915   | 368 920   | 345 726   | 298 039   |
| Dont F8 Camp Hortes-Cam del Foun (ancien F4bis) | Quaternaire        | 127 301      | 182 393         | 182 790   | 78 684    | 0         | 76 904    | 173 192   |
| Dont F7 Camp Hortes-Cam del Foun                | Quaternaire        | 293 986      | 322 026         | 278 005   | 278 005   | 288 305   | 370 952   | 312 760   |
| Dont Serralongue Ouest -Al Moly                 | Pliocène           | 345 621      | 229 147         | 493 115   | 406 399   | 407 464   | 510 101   | 423 413   |
| Dont F3bis Forage profond - Cam del Foun        | Pliocène           | 345 646      | 246 395         | 19 877    | 188 513   | 273 711   | 269 331   | 236 595   |
|                                                 |                    | UI           | DI de Théza     |           |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | 116 837      | 107 493         | 106 147   | 127 517   | 115 747   | 119 861   | 119 060   |
| Dont Forage Village Théza                       | Pliocène           | 116 837      | 107 493         | 106 147   | 127 517   | 115 747   | 119 861   | 119 060   |
|                                                 |                    | UDI (        | de Montescot    |           |           |           |           |           |
| Volume produits RPQS (m3/an)                    | -                  | -            | -               | -         | -         | -         | -         | -         |
|                                                 |                    |              | TOTAL           |           |           |           |           |           |
| Volumes produits totaux                         |                    | 2 316 877    | 2 469 040       | 2 492 994 | 2 531 302 | 2 522 954 | 2 644 697 | 2 631 375 |
|                                                 | appe pliocène      | 1 198 764    | 958 970         | 1 005 503 | 1 130 437 | 1 195 079 | 1 297 517 | 1 191 447 |
| Dont napp                                       | pe quaternaire     | 1 118 113    | 1 510 070       | 1 487 491 | 1 400 865 | 1 327 875 | 1 347 180 | 1 439 928 |

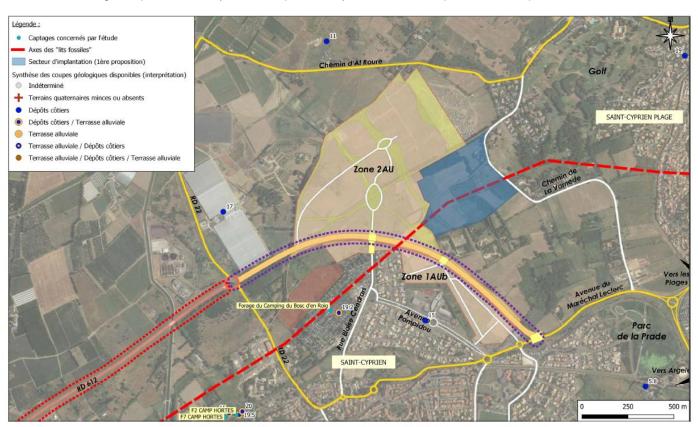
Un volume maximal d'environ 1 510 000 m3/an était prélevé au cours des 7 dernières années. A l'horizon 2050, un volume de l'ordre de 1 640 000 m3/an devra être prélevé pour subvenir aux besoins futurs.

| CC Sud Roussillon                                   |       |           |           |           |           |           |           |           |
|-----------------------------------------------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Adéquation besoins / Futur droit de prélève         | ment  | 2020      | 2025      | 2030      | 2035      | 2040      | 2045      | 2050      |
| Volume autorisé total                               | m3/an | 4 143 215 | 4 143 215 | 4 143 215 | 4 143 215 | 4 143 215 | 4 143 215 | 4 143 215 |
| Dont futur droit de prélèvement pliocène            | m3/an | 1 243 215 | 1 243 215 | 1 243 215 | 1 243 215 | 1 243 215 | 1 243 215 | 1 243 215 |
| Dont volumes autorisés quaternaire                  | m3/an | 2 900 000 | 2 900 000 | 2 900 000 | 2 900 000 | 2 900 000 | 2 900 000 | 2 900 000 |
| Besoins en production total annuel (hors Montescot) | m3/an | 2 637 291 | 2 629 136 | 2 673 805 | 2 721 341 | 2 771 935 | 2 825 795 | 2 883 141 |

| CC Sud Roussillon                     |      |        |        |        |        |        |        |        |
|---------------------------------------|------|--------|--------|--------|--------|--------|--------|--------|
| Adéquation besoins / Volumes autor    | isés | 2020   | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |
| Débit de prélèvement maximum autorisé | m3/j | 19 280 | 19 280 | 19 280 | 19 280 | 19 280 | 19 280 | 19 280 |
| Besoins en production jour de pointe  | m3/j | 13 112 | 12 930 | 13 128 | 13 339 | 13 565 | 13 805 | 14 062 |

Les volumes actuellement autorisés seront néanmoins suffisants pour subvenir aux besoins futurs de la Communauté de Communes Sud Roussillon.

## 10.3 Nouvelles ressources


Il y a plus de 15 ans une étude prospective hydrogéologique et géophysique de reconnaissance d'un secteur du lit fossile du Tech a été réalisée sur le secteur en vue d'implanter un ouvrage de reconnaissance. Cette étude a donné lieu à la création d'un forage piézométrique faisant apparaître une capacité de production quaternaire complémentaire de 1 000 m3/j. Conscient que le paléochenal pourrait être au centre de polémiques départementales liées à la modification de seuils sur son passage, l'idée de se restreindre à ce secteur a été élargie à l'ensemble du territoire.

Le projet de forage sur Latour-Bas-Elne au lieu-dit El Molinas dans la nappe quaternaire, a fait l'objet d'un avis sanitaire préliminaire favorable le 7 décembre 2009. Cependant, d'un point de vue hydrogéologique, cet ouvrage n'offrirait pas la potentialité suffisante pour sécuriser la CCSR.

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 104 / 118
Rapport d'étude Version c

Une recherche en eau est en cours au sein de la nappe quaternaire entre Saint-Cyprien et Alenya. L'objectif de cette recherche concernera la sécurisation du contexte quaternaire sur la communauté de communes. L'hydrogéologue Jean Louis Lenoble a proposé une zone d'implantation du futur ouvrage de prélèvement (document provisoire). Cette zone est présentée ci-après.



<u>Figure 28 :</u> Première proposition d'un secteur pour une recherche d'eau dans les terrains quaternaires (document provisoire) Fond : Plan communiqué par la Communauté de communes SUD-ROUSSILLON - Echelle : Voir l'échelle graphique

Extrait SYNTHESE GEOLOGIQUE ET HYDROGEOLOGIQUE RECHERCHE D'EAU DANS L'AQUIFERE QUATERNAIRE Document provisoire 6/10/2021

### 10.4 Interconnexions potentielles

L'intérêt d'une telle solution serait de sécuriser la distribution, si possible par une interconnexion avec une structure exploitant un autre aquifère afin également de diversifier la ressource exploitée.

Les communes limitrophes avec le territoire de la CC Sud Roussillon font partie de Perpignan Méditerranée Métropole et de la Communauté de Communes Albères – Côte Vermeille.

Le tableau ci-dessous présente les possibilités d'interconnexion entre le territoire et ces collectivités voisines.

| Collectivité                                                      | Possibilité d'alimenter la Communauté de<br>Communes              | Possibilité d'alimenter la commune depuis le réseau de la CC                                                                                                                                                |
|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PMM (Saint<br>Nazaire,<br>Saleilles,<br>Villeneuve de<br>la Raho) | La CCSR n'envisage pas d'interconnexion avec les communes de PMM. | Les SDAEP des communes du secteur sud de PMM (Saint Nazaire, Saleilles, Villeneuve de la Raho) sont en cours de réalisation. Ils permettront de mettre en évidence des éventuels besoins en interconnexion. |

#### **ENTECH Ingénieurs Conseils**

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 105 / 118
Rapport d'étude Version c

| Collectivité                                                                                 | Possibilité d'alimenter la Communauté de<br>Communes                                         | Possibilité d'alimenter la commune depuis le réseau de la CC                                                                                  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Communauté<br>de<br>Communes<br>Albères –<br>Côte<br>Vermeille<br>Illiberis<br>(Bages, Elne) | Le réseau de Montescot est d'ores et déjà interconnecté avec le réseau de la commune d'Elne. | Compte tenu des autonomies de stockage actuelles sur la CCSR, il semble difficilement envisageable une interconnexion pour secourir la CCACV. |



### 11 PROPOSITION DE SCENARIOS

### 11.1 ASPECT RESSOURCE

### 11.1.1 AMENAGEMENTS A PREVOIR

### 11.1.1.1 AMENAGEMENTS LIES AU DIAGNOSTIC DES OUVRAGES

Concernant les ouvrages de captage, le seul aménagement à réaliser est le suivant :

| Ouvrage              | Caractéristiques                         |
|----------------------|------------------------------------------|
| Forage Village Théza | Event à rehausser à 1m60 au dessus du TN |

### 11.1.1.2 AMENAGEMENTS LIES AUX CAPACITES DES RESSOURCES

Comme vu précédemment, les ressources autorisées seront suffisantes pour la satisfaction des besoins futurs sur la CCSR.

### 11.1.2 COUT DES AMENAGEMENTS

| Ouvrage              | Caractéristiques                         | Coût €HT y compris divers et<br>maitrise d'œuvre |
|----------------------|------------------------------------------|--------------------------------------------------|
| Forage Village Théza | Event à rehausser à 1m60 au dessus du TN | 500                                              |

## 11.2 ASPECT TRAITEMENT

### 11.2.1 AMENAGEMENTS A PREVOIR

Les aménagements à réaliser concernant le traitement de l'eau sur les différentes UDI sont les suivants :

|                                  | Alénya                                                                    |                                                       |  |  |
|----------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|--|--|
| Param ètres                      | Désordres observés                                                        | Aménagement à réaliser                                |  |  |
| Chlore                           | Taux insuffisant en sortie de réservoir et dans le réseau de distribution | Recalibrer le système de désinfection                 |  |  |
| Température                      | Dépassements limités de la référence de qualité                           | -                                                     |  |  |
|                                  | Théza                                                                     |                                                       |  |  |
| Param ètres                      | Désordres observés                                                        | Aménagement à réaliser                                |  |  |
| Chlore                           | Taux insuffisant en sortie de réservoir et dans le réseau de distribution | Recalibrer le système de désinfection                 |  |  |
| Température                      | Dépassements limités de la référence de qualité                           | -                                                     |  |  |
|                                  | Latour Bas Elne- Saint C                                                  | yprien                                                |  |  |
| Param ètres                      | Désordres observés                                                        | Aménagement à réaliser                                |  |  |
| Chlore                           | Taux insuffisant en sortie de réservoir et dans le réseau de distribution | Recalibrer le système de désinfection                 |  |  |
| Plomb/Equilibre calco-carbonique | Potentiel de dissolution très élevé<br>Eaux agressives                    | Mettre en place un système de<br>remise à l'équilibre |  |  |
| Température                      | Dépassements faibles de la référence de qualité                           | -                                                     |  |  |
| Pesticides                       | 6 dépassements de la limite de qualité sur<br>6 884 analyses              | Continuer le suivi régulier du paramètre              |  |  |

### 11.2.1.1 Systemes de desinfection

Le taux de chlore sera à adapter au niveau des systèmes de désinfection afin d'atteindre une concentration minimale en chlore libre de 0,3 mg/l en sortie des réservoirs et viser une concentration de 0,1 mg/l en tout point du réseau de distribution, conformément au plan vigipirate.

# 11.2.1.2 <u>MISE EN PLACE D'UN SYSTEME DE REMISE A L'EQUILIBRE DES EAUX EN SORTIE DU</u> RESERVOIR DE SAINT-CYPRIEN

La Circulaire n°2007-39 du 23 janvier 2007 relative à la mise en œuvre des arrêtés du 11 janvier 2007 concernant les eaux destinées à la consommation humaine, indique – annexe 1, d) – que les eaux doivent être à l'équilibre ou légèrement incrustantes ; il est considéré que cette référence de qualité est satisfaite lorsque :

- 0.2 ≤ pHeq pHin situ ≤ 0.2 (eau à l'équilibre calco carbonique),
- 0.3 ≤ pHeq pHin situ ≤ -0.2 (eau légèrement incrustante).

Les eaux issues des ressources alimentant le réservoir de Saint Cyprien ont ainsi été définies comme agressives, ce qui déroge à la circulaire.

Plusieurs techniques de remise à l'équilibre / neutralisation peuvent être envisagées :

### • Neutralisation physique : élimination du CO2 en excès par aération

L'aération par strippage du CO2 sert à corriger l'agressivité d'eaux riches en CO2 agressif. La solubilité du CO2 dans l'eau suit les lois générales de la solubilité des gaz. La concentration en CO2 diminue quand la température s'élève et quand l'eau est mise en présence d'une phase gazeuse pauvre en CO2. L'aération peut dès lors s'obtenir de différentes façons : par cascades, ruissellement sur des matériaux de contact, diffusion dans un émulseur, ventilation forcée en colonne à garnissage ou pulvérisation, cette dernière étant la plus efficace.

Tous les systèmes de stripping sont des systèmes à contre-courant, régis par les lois des transferts de masse. L'utilisation de garnissage permet d'augmenter la surface de transfert et de minimiser l'encombrement des systèmes.

Les eaux brutes doivent être agressives et avoir un titre alcalimétrique compris entre 8 et 15°F. Les eaux issues des ressources alimentant l'UDI de Saint-Cyprien – Latour-Bas-Elne ont un TAC compris entre 13,5 et 16,4. Il semble ainsi trop élevé pour retenir cette méthode.

#### • Neutralisation chimique:

La neutralisation chimique peut (ou doit) être complétée par une neutralisation par la soude à dosages faibles, pour un ajustement du pH).

Le mélange des eaux, ne figurant pas dans la circulaire DGS/VS4/2000/166, n'est et ne doit pas être une solution de neutralisation à part entière mais, en visant d'autres objectifs, peut contribuer à obtenir une eau à l'équilibre.

- Mise à l'équilibre par injection de réactifs : hydroxyde de sodium, hydroxyde de calcium (eau de chaux), carbonate de sodium, bicarbonate de sodium. Il s'agit de la technique de traitement la plus adaptée dans le cas de la CC Sud Roussillon.
- Mise à l'équilibre par percolation sur des produits alcalino-terreux (carbonate de calcium, dolomies...): procédé utilisé pour des petits à moyens débits, qui ne correspondent pas aux besoins de la CC Sud Roussillon.

### Mélange des eaux :

#### **ENTECH** Ingénieurs Conseils

Communauté de communes Sud Roussillon - Schéma Directeur d'Alimentation en Eau Potable Page 108 / 118
Rapport d'étude Version c

Il existe un projet de nouveau forage sur la CC Sud Roussillon, entre Saint Cyprien et Alenya. Ce nouveau forage permettrait la sécurisation de l'ensemble de la CC. Le débit espéré au niveau du nouveau forage est de 200 m³/h, ce qui correspondrait à 4 000 m³/j.

Le mélange des eaux, ne figurant pas dans la circulaire DGS/VS4/2000/166, ne doit pas être une solution de neutralisation à part entière. Cependant, visant l'objectif de sécurisation, il pourrait contribuer à obtenir une eau à l'équilibre.

Cette solution possèderait l'avantage d'éviter la mise en œuvre d'un traitement au niveau du réservoir actuel de Saint-Cyprien.

Il est ainsi préconisé, lorsque le nouveau captage sera mis en service, de réaliser sur le mélange des eaux un suivi pendant un an des paramètres suivants : pH, carbonates, hydrogénocarbonates, calcium, CO2 libre et total (pourra être réalisé au travers du contrôle sanitaire).

### 11.2.2 COUT DES AMENAGEMENTS

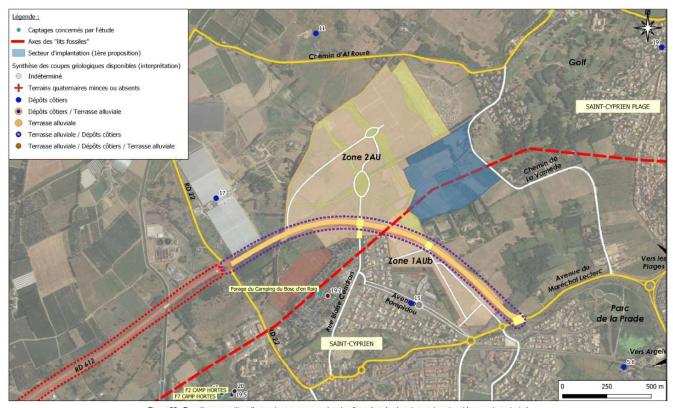
| Paramètre                                   | Paramètre Aménagement                                                                                                                                                                                                                                                                                                                         |                   |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Chlore libre                                | Recalibrer les systèmes de désinfection des<br>UDI d'Alenya, Théza, et Saint-Cyrien-Latour<br>Bas Elne                                                                                                                                                                                                                                        | Pour mémoire (PM) |
| Pesticides                                  | Poursuite du suivi régulier des paramètres sur l'UDI de Saint-Cyprien – Latour-Bas-Elne                                                                                                                                                                                                                                                       | PM                |
| Equilibre calco-carbonique –<br>agressivité | Mise en œuvre d'un suivi régulier sur un an des paramètres pH, carbonates, hydrogénocarbonates, calcium, CO2 libre et total (pourra être réalisé au travers du contrôle sanitaire) pour déterminer l'équilibre calcocarbonique sur le mélange des eaux du futur captage et des captages existants de l'UDI de Saint-Cyprien – Latour-Bas-Elne | РМ                |

### 11.3 ASPECT STOCKAGE

### 11.3.1 AMENAGEMENTS A PREVOIR

### 11.3.1.1 AMENAGEMENTS LIES AU DIAGNOSTIC DES OUVRAGES

La synthèse des aménagements à engager sur les différents ouvrages est la suivante.


| Ouvrage                 | Caractéristiques                                 |  |  |
|-------------------------|--------------------------------------------------|--|--|
|                         | Remplacement échelle d'accès                     |  |  |
| Réservoir d'Alénya      | Remplacement capot fonte accès toiture           |  |  |
| Reservoir d'Aleriya     | Reprise étanchéité toiture et reprise béton      |  |  |
|                         | Vanne Bayard de régulation à contrôler           |  |  |
| Réservoir de Corneilla  | Remplacement échelle d'accès                     |  |  |
| Reservoir de Corriella  | Remplacement capot fonte accès toiture           |  |  |
| Réservoir de St Cyprien | Remplacement échelle d'accès à la cuve et à la t |  |  |
| Reservoir de 3t Cyprien | Traitement de la conduite corrodée               |  |  |
| Bâche de St Cyprien     | Traitement de la conduite corrodée               |  |  |

### 11.3.1.2 AMENAGEMENTS LIES AUX AUTONOMIES DES OUVRAGES

Comme vu précédemment, le déficit de stockage en pointe à l'horizon 2050 sera au global de 5 300 m³. De plus, il n'existe actuellement pas de volumes bloqués pour la défense incendie au sein

des ouvrages de stockage.

La construction d'un nouvel ouvrage de stockage de 5 300 m³ pourra ainsi être envisagé à proximité du futur ouvrage de captage envisagé.



<u>Figure 28</u> : Première proposition d'un secteur pour une recherche d'eau dans les terrains quaternaires (document provisoire) Fond : Plan communiqué par la Communauté de communes SUD-ROUSSILLON - Echelle : Voir l'échelle graphique

### √ Solution technique

Les caractéristiques du nouvel ouvrage seront les suivantes :

- o Côte radier : 2 mNGF environ
- Hauteur d'eau maximale de 7 m,
- o Deux cuves de 2 650 m<sup>3</sup>,
- Diamètre des cuves : 22 m

Le raccordement de ce nouveau réservoir pourrait être envisagé au niveau du réseau structurant en DN500 situé à proximité du canal d'Elne. Le dimensionnement et le positionnement de cette conduite dépendra de la localisation du futur réservoir.

Dans le cadre du présent schéma directeur et de manière hypothétique, il sera envisagé une conduite de 1 500 ml en fonte DN500mm.

### √ Démarches administratives à mener

La construction du nouvel ouvrage de stockage devra faire l'objet d'un permis de construire.

Les modifications apportées sur la capacité de stockage communautaire devront faire l'objet d'un porté à connaissance de l'ARS.

### 11.3.2.1 AMENAGEMENTS LIES AU DIAGNOSTIC DES OUVRAGES

| Ouvrage                 | Caractéristiques                                 | Coût €HT y compris divers et<br>maitrise d'œuvre |
|-------------------------|--------------------------------------------------|--------------------------------------------------|
|                         | Remplacement échelle d'accès                     | 4 200                                            |
| Réservoir d'Alénya      | Remplacement capot fonte accès toiture           | 2 100                                            |
| Reservoir d'Alerrya     | Reprise étanchéité toiture et reprise béton      | 21 000                                           |
|                         | Vanne Bayard de régulation à contrôler           | 1 500                                            |
| Réservoir de Corneilla  | Remplacement échelle d'accès                     | 4 200                                            |
|                         | Remplacement capot fonte accès toiture           | 2 100                                            |
| Réservoir de St Cyprien | Remplacement échelle d'accès à la cuve et à la t | 8 400                                            |
| Reservoir de St Cyprien | Traitement de la conduite corrodée               | 1 200                                            |
| Bâche de St Cyprien     | Traitement de la conduite corrodée               | 1 200                                            |
|                         | Total                                            | 45 900                                           |

### 11.3.2.2 <u>AMENAGEMENTS LIES AUX AUTONOMIES DES OUVRAGES</u>

L'estimation financière pour la construction du réservoir, y compris divers et maitrise d'œuvre, est la suivante :

| Caractéristiques                                                                                                                                  | Coût €HT y compris divers et<br>maitrise d'œuvre |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Création d'un nouveau réservoir communautaire de 5 300 m3 sur Saint-Cyprien                                                                       | 6 360 000                                        |  |
| Création d'une conduite de distribution du<br>nouveau réservoir en fonte DN500 sur 1 500 ml<br>et raccordement sur le réseau en DN500<br>existant | 1 242 000                                        |  |
| Total                                                                                                                                             | 7 602 000                                        |  |

### 11.4 ASPECT REPRISES / SURPRESSIONS

### 11.4.1 AMENAGEMENTS A PREVOIR

### 11.4.1.1 <u>AMENAGEMENTS LIES AU DIAGNOSTIC DES OUVRAGES</u>

Les ouvrages de reprise / surpression sont en bon état. Aucun aménagement particulier n'est à prévoir.

### 11.4.1.2 <u>AMENAGEMENTS LIES AUX CAPACITES DES OUVRAGES</u>

Concernant le temps de fonctionnement des stations de reprise / surpression, ils s'avèrent inférieurs à 20h jusqu'en 2050. Les capacités des stations de reprise / surpression seront ainsi suffisantes à l'horizon du SDAEP.

## 11.4.2 COUT DES AMENAGEMENTS

Sans objet.

## 11.5 MODIFICATION, RENFORCEMENT, ET EXTENSION DES RESEAUX

### 11.5.1 INSUFFISANCES MISES EN EVIDENCE DANS LE CADRE DE LA MODELISATION

### 11.5.1.1 SYNTHESE DES INSUFFISANCES MISES EN EVIDENCE

Concernant le réseau en situation future, les principales conclusions de la modélisation sont les suivantes :

- En période de pointe sur la CC Sud Roussillon, aucun secteur ne présente des pressions insuffisantes. A noter des pressions supérieures à 5 bars sur la commune de Montescot, mais restant inférieures à 5,5 bars ce qui est limite mais acceptable.
- En période de faible consommation, plusieurs secteurs disposent de pressions supérieures à 5 bars, sur Montescot et Saint Cyprien. Ces pressions restent néanmoins inférieures à 5,5 bars ce qui est limite mais acceptable.
- Aucune variation de pression supérieure à 2 bars n'est observée au cours de la journée de pointe.
- En périodes de pointe et de faible consommation, les vitesses sur le réseau de distribution de la CC Sud Roussillon sont toutes inférieures à 1,5 m/s soit des vitesses satisfaisantes, hormis sur l'adduction en amiante ciment DN80 du réservoir de Théza, qui rencontre des vitesses de 2,2 m/s.

### 11.5.1.2 SCENARIO PROPOSE

La conduite d'adduction du réservoir de Théza depuis le forage de Théza sera à renforcer en fonte DN100 sur 25 ml.

### 11.5.1.3 ESTIMATION FINANCIERE

| Caractéristiques                           | Coût €HT y compris divers et<br>maitrise d'œuvre |  |  |
|--------------------------------------------|--------------------------------------------------|--|--|
| Renforcement de la conduite d'adduction du |                                                  |  |  |
| réservoir de Théza en fonte DN100mm sur 25 | 9 000                                            |  |  |
| ml(actuellement amiante ciment DN80)       |                                                  |  |  |

### 11.5.2 AMELIORATION DU RENDEMENT

Comme nous l'avons vu précédemment, les rendements actuels des différentes UDI du réseau d'alimentation en eau potable de la Communauté de Communes Sud Roussillon étaient compris entre 73 et 87% en 2020.

Afin de maintenir/augmenter le rendement du réseau de distribution de la CC Sud Roussillon au meilleur niveau (85% à l'horizon 2025), un plan de renouvellement des réseaux a été réalisé.

L'objectif de cet article est de présenter :

- Les critères retenus pour déterminer les secteurs devant faire l'objet de travaux sur les quatre communes.
- Le gain théorique attendu en termes de réduction du débit de fuite.
- Et enfin la justification de leur classification selon des délais et priorité en fonction d'une analyse multicritères.

# 11.5.2.1 CRITERES RETENUS POUR DETERMINER LES SECTEURS DEVANT FAIRE L'OBJET DE TRAVAUX

Les canalisations devant faire l'objet de travaux ont été déterminées en fonction des critères suivants :

Critères liés au gain environnemental

- √ Matériaux sujets à fuites
- √ Réseaux situés sous voirie à forte circulation
- √ Nombre fuites réparées au cours des 10 dernières années
- √ Indice linéaire de perte du secteur avant les réparations
- √ Gain théorique en m³/j lié à la réhabilitation des réseaux
- √ Ratio en k €HT /m³/j économisé
- Critères liés à la qualité de l'eau distribuée
  - √ Nombre de branchements en plomb
  - √ Risque de relargage de CVM
- Autres critères
  - √ Date de pose des réseaux
  - √ Défense incendie à assurer par la canalisation (poteau incendie existant ou à créer)
  - √ Opportunité de travaux (travaux de réfection de voirie prévus...)
  - √ Canalisation à renforcer

### 11.5.2.1.1 Détermination du gain théorique attendu

Nous avons retenu les hypothèses suivantes :

- Le débit minimum du secteur représente son débit de fuites (analyse de la télésurveillance)
- Sur chacun des secteurs, des tronçons sont identifiés comme présentant des facteurs de risques de dégradation du service en fonction des critères présentés dans l'article précédent et des résultats de l'analyse des débits nocturnes
- Nous prenons l'hypothèse que les travaux permettront de résorber 80% des fuites

L'ensemble des tronçons constituant les réseaux de distribution de la CC a été intégré au sein du plan de renouvellement des réseaux.

### 11.5.2.1.2 Justification de leur classification par priorité

En raison du linéaire important devant faire l'objet de travaux, il s'agit de définir pour la collectivité des priorités d'actions.

La classification des travaux à réaliser s'est effectuée selon les critères environnementaux cités précédemment ainsi que selon l'efficacité des travaux vis à vis des investissements à prévoir. L'échéance des travaux a, elle, été définie sur la base de cette analyse avec prise en compte des autres critères (notamment le critère d'opportunité, les nécessités de renforcements...).

Les tronçons ont donc été classés autour de trois priorités. Au vu du nombre de tronçons intégrés au sein du plan de renouvellement, le tableau correspondant a été annexé au présent rapport.

Les gains en eau escomptés par échéance sont :

Court terme : 1 036 m³/j sur 25 ans,

Moyen terme: 1 115 m³/j sur 25 ans,

Long terme : 1 480 m³/j sur 44 ans.

### 11.5.2.2 ESTIMATION FINANCIERE

Les différents travaux de réhabilitation des réseaux ont fait l'objet d'un chiffrage tenant compte des caractéristiques locales des réseaux.

Les investissements à engager par priorité sont présentés ci-dessous :

|                        | Priorité 1 | Priorité 2 | Priorité 3 |
|------------------------|------------|------------|------------|
| Linéaire à renouveller | 61 911     | 59 816     | 105 052    |
| % du linéaire<br>total | 27%        | 26%        | 46%        |
| Coûts (k€ HT)          | 40 751     | 40 517     | 71 106     |

### 11.5.2.3 COMPLEMENT AU PLAN D'ACTION DE LUTTE CONTRE LES FUITES

Au-delà de la mise en place d'un plan de renouvellement des réseaux (paragraphes précédents), d'autres actions de lutte contre les fuites peuvent être engagées par la collectivité.

En effet, le maître d'ouvrage fait réaliser chaque année une prestation externe de recherche de fuites sur l'ensemble de ses communes.

De plus, la télérelève des compteurs abonnés sur la CC Sud Roussillon est prévue à l'horizon 2025 pour un montant de 1,4 M€.

### 11.6 SECURISATION - DIVERSIFICATION

La CC Sud Roussillon devra poursuivre ses recherches en eau dans le but de sécuriser la ressource quaternaire de son territoire.

## 11.7 SYNTHESE DES SCENARIOS PROPOSES

| Enjeu      | Scénarii                                                | Description                                                                                                                                                                                                                                                                                                                                   | Coûts €HT y compris divers et<br>maitrise d'oeuvre |
|------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Ressource  | Aménagement<br>forage village<br>Théza                  | Event à rehausser à 1m60 au-dessus du TN                                                                                                                                                                                                                                                                                                      | 500                                                |
| Ressource  | Recherche en<br>eau pour<br>sécurisation                | Poursuite de la recherche en eau pour sécurisation du quaternaire                                                                                                                                                                                                                                                                             | Pour mémoire (PM)                                  |
|            | Chlore libre                                            | Recalibrer les systèmes de désinfection des<br>UDI d'Alenya, Théza, et Saint-Cyrien-Latour<br>Bas Elne                                                                                                                                                                                                                                        | РМ                                                 |
|            | Pesticides                                              | Poursuite du suivi régulier des paramètres sur l'UDI de Saint-Cyprien – Latour-Bas-Elne                                                                                                                                                                                                                                                       | PM                                                 |
| Traitement | Equilibre calco-<br>carbonique –<br>agressivité         | Mise en œuvre d'un suivi régulier sur un an des paramètres pH, carbonates, hydrogénocarbonates, calcium, CO2 libre et total (pourra être réalisé au travers du contrôle sanitaire) pour déterminer l'équilibre calcocarbonique sur le mélange des eaux du futur captage et des captages existants de l'UDI de Saint-Cyprien – Latour-Bas-Elne | РМ                                                 |
|            | Aménagements<br>liés aux<br>diagnostics des<br>ouvrages | Aménagements cf paragraphe 11.3.1                                                                                                                                                                                                                                                                                                             | 45 900                                             |
| Stockage   | Déficit de<br>stockage                                  | Création d'un nouveau réservoir communautaire de 5 300 m3 sur Saint-Cyprien  - Création d'une conduite de distribution du nouveau réservoir en fonte DN500 sur 1 500 ml et raccordement sur le réseau en DN500 existant                                                                                                                       | 7 602 000                                          |

| Enjeu                           | Scénarii                                      | Description                                                                                                                                                                                                             | Coûts €HT y compris divers et<br>maitrise d'oeuvre                            |
|---------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                 | Aménagements à prévoir liés à la modélisation | Renforcement de la conduite d'adduction du réservoir de Théza en fonte DN100mm sur 25 ml (actuellement amiante ciment DN80)                                                                                             | 9 000                                                                         |
| Réseaux                         | Programme de<br>renouvellement<br>des réseaux | Priorité 1 : renouvellement de 27% du réseau pour un gain de 1 036 m3/j Priorité 2 : renouvellement de 26% du réseau pour un gain de 1 115 m3/j Priorité 3 : renouvellement de 41% du réseau pour un gain de 1 480 m3/j | Priorité 1 : 40 751 000<br>Priorité 2 : 40 517 000<br>Priorité 3 : 71 106 000 |
| Parc de<br>compteurs<br>abonnés | Renouvellement<br>des compteurs<br>abonnés    | Mise en place de la télérelève des compteurs abonnés                                                                                                                                                                    | 1 400 000                                                                     |

## 12 ETUDE PRECISE DU SCENARIO RETENU ET CONCLUSIONS

### Le maître d'ouvrage a retenu les scénarios suivants au mois de mai 2022.

Le tableau ci-dessous synthétise les orientations retenues dans le cadre du Schéma Directeur d'Alimentation en Eau Potable de la CC Sud Roussillon.

| Enjeu                           | Scénarii                                                | Description                                                                                                                                                                                                                                                                                                                                    | Coûts €HT y compris<br>divers et maitrise<br>d'œuvre                          | Echéance                                                 |
|---------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|
| Ressource                       | Aménagement<br>forage village<br>Théza                  | Event à rehausser à 1m60 au-<br>dessus du TN                                                                                                                                                                                                                                                                                                   | 500                                                                           | 2022-2023                                                |
|                                 | Recherche en<br>eau pour<br>sécurisation                | Poursuite de la recherche en eau pour sécurisation du quaternaire                                                                                                                                                                                                                                                                              | Pour mémoire (PM)                                                             | 2022-2025                                                |
|                                 | Chlore libre                                            | Recalibrer les systèmes de<br>désinfection des UDI d'Alenya,<br>Théza, et Saint-Cyrien-Latour Bas<br>Elne                                                                                                                                                                                                                                      | РМ                                                                            | 2022-2023                                                |
|                                 | Pesticides                                              | Poursuite du suivi régulier des<br>paramètres sur l'UDI de Saint-<br>Cyprien – Latour-Bas-Elne                                                                                                                                                                                                                                                 | РМ                                                                            | 2022-2023                                                |
| Traitement                      | Equilibre calco-<br>carbonique –<br>agressivité         | Mise en œuvre d'un suivi régulier sur un an des paramètres pH, carbonates, hydrogénocarbonates, calcium, CO2 libre et total (pourra être réalisé au travers du contrôle sanitaire) pour déterminer l'équilibre calco-carbonique sur le mélange des eaux du futur captage et des captages existants de l'UDI de Saint-Cyprien – Latour-Bas-Elne | РМ                                                                            | 2022-2023                                                |
| Stockage                        | Aménagements<br>liés aux<br>diagnostics des<br>ouvrages | Aménagements cf paragraphe<br>11.3.1                                                                                                                                                                                                                                                                                                           | 45 900                                                                        | 2022-2023                                                |
|                                 | Déficit de<br>stockage                                  | Création d'un nouveau réservoir communautaire de 5 300 m3 sur Saint-Cyprien  - Création d'une conduite de distribution du nouveau réservoir en fonte DN500 sur 1 500 ml et raccordement sur le réseau en DN500 existant                                                                                                                        | 7 602 000                                                                     | 2031                                                     |
| Réseaux                         | Aménagements<br>à prévoir liés à<br>la modélisation     | Renforcement de la conduite<br>d'adduction du réservoir de Théza<br>en fonte DN100mm sur 25 ml<br>(actuellement amiante ciment DN80)                                                                                                                                                                                                           | 9 000                                                                         | 2026                                                     |
|                                 | Programme de<br>renouvellement<br>des réseaux           | Priorité 1 : renouvellement de 27% du réseau pour un gain de 1 036 m3/j Priorité 2 : renouvellement de 26% du réseau pour un gain de 1 115 m3/j Priorité 3 : renouvellement de 41% du réseau pour un gain de 1 480 m3/j                                                                                                                        | Priorité 1 : 40 751 000<br>Priorité 2 : 40 517 000<br>Priorité 3 : 71 106 000 | Priorité 1 : 2022-<br>2046<br>Priorité 2 : 2047-<br>2072 |
| Parc de<br>compteurs<br>abonnés | Renouvellement<br>des compteurs<br>abonnés              | Mise en place de la télérelève des compteurs abonnés                                                                                                                                                                                                                                                                                           | 1 400 000                                                                     | 2025                                                     |

# 12.1 ESTIMATION DES COUTS D'INVESTISSEMENT ET INCIDENCES SUR LE PRIX DE L'EAU

### 12.1.1 COUTS DES TRAVAUX

Le coût des travaux est repris ci-dessous pour chaque échéance, jusqu'à l'horizon 2050 :

| Année                                                                                                                     | 2022-2025 | 2026-2030 | 2031-2040  | 2041-2050  |
|---------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------------|------------|
| Aménagement forage village Théza - Event à rehausser à 1m60 au-dessus du TN                                               | 500       |           |            |            |
| Recherche en eau pour sécurisation - Poursuite de la recherche en eau pour sécurisation du quaternaire                    | PM        |           |            |            |
| Chlore libre - Recalibrer les systèmes de désinfection des UDI<br>d'Alenya, Théza, et Saint-Cyrien-Latour Bas ⊟ne         | PM        |           |            |            |
| Pesticides - Poursuite du suivi régulier des paramètres sur l'UDI<br>de Saint-Cyprien – Latour-Bas-⊟ne                    | PM        |           |            |            |
| Equilibre calco-carbonique – agressivité - Mise en œuvre d'un<br>suivi régulier sur un an                                 | PM        |           |            |            |
| Aménagements liés aux diagnostics des ouvrages                                                                            | 45 900    |           |            |            |
| Déficit de stockage - Création d'un nouveau réservoir communautaire de 5 300 m3 sur Saint-Cyprien et conduite de desserte |           |           | 7 602 000  |            |
| Renforcement de la conduite d'adduction du réservoir de Théza en fonte DN100mm sur 25 ml                                  |           | 9 000     |            |            |
| Plan de renouvellement - Priorité 1                                                                                       | 6 520 160 | 8 150 200 | 16 300 400 | 9 780 240  |
| Plan de renouvellement - Priorité 2                                                                                       |           |           |            | 6 482 720  |
| Plan de renouvellement - Priorité 3                                                                                       |           |           |            |            |
| Mise en place de la télérelève des compteurs abonnés                                                                      | 1 400 000 |           |            |            |
| Total                                                                                                                     | 7 966 560 | 8 159 200 | 23 902 400 | 16 262 960 |

### 12.1.2 AIDES FINANCIERES POSSIBLES

L'Agence de l'Eau Rhône Méditerranée Corse et le Conseil Départemental sont susceptibles d'attribuer des aides financières pour les travaux d'Alimentation en Eau Potable.

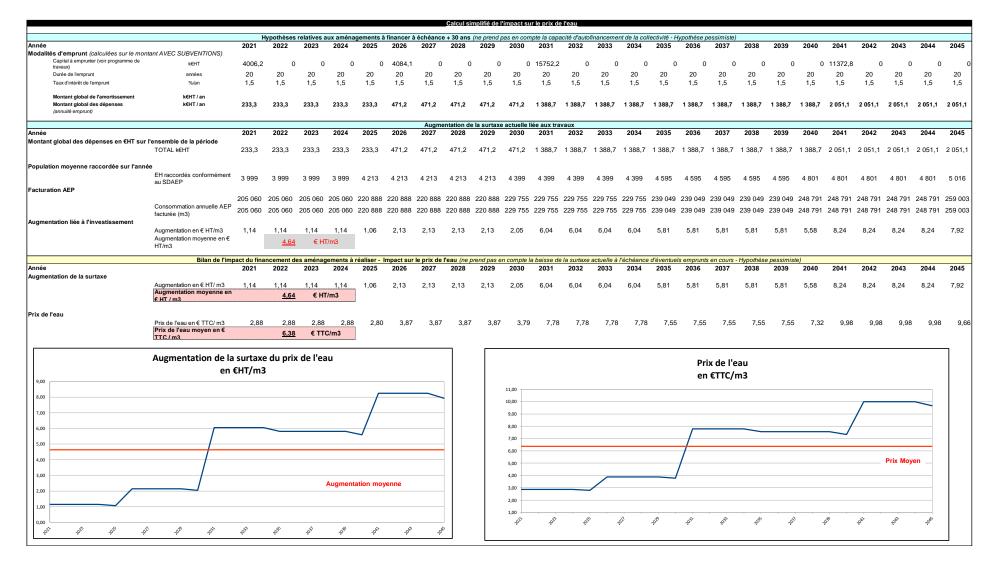
Au stade du Schéma Directeur d'Alimentation en Eau Potable, nous proposons ainsi de retenir un taux de subventions de :

- 50 % pour la réhabilitation des réseaux de priorité 1 (subventions AE et CD34),
- 50 % pour la mise en place de la télérelève sur les compteurs abonnés (subventions AE et CD34),

Compte tenu de l'incertitude liée aux autres aménagements, nous retiendrons pour ceux-ci un taux de subvention nul.

### 12.1.3 CONDITIONS DE FINANCEMENT

Concernant les conditions d'emprunt, les critères retenus sont les suivants :


- Taux d'intérêt de 1,5 %,
- Durée d'emprunt de 20 ans.

Finalement, la part d'autofinancement de la collectivité est considérée comme nulle, c'est à dire que la totalité du montant non subventionné est financée par l'emprunt.

### 12.1.4 IMPACT SUR LE PRIX DE L'EAU

L'impact des charges financières imputées sur le budget eau potable a été ramené aux volumes annuels facturés (AEP) et en fonction des hypothèses de financement du projet décrite précédemment.

Les résultats obtenus sont présentés ci-dessous.

